Câu hỏi:
12/07/2024 6,546
Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM.
a) Chứng minh rằng tứ giác PQME nội tiếp đường tròn.
b) Chứng minh: ∆AKN = ∆BKM.
c) Chứng minh: AM . BE = AN . AQ.
d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định
Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM.
a) Chứng minh rằng tứ giác PQME nội tiếp đường tròn.
b) Chứng minh: ∆AKN = ∆BKM.
c) Chứng minh: AM . BE = AN . AQ.
d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Xét đường tròn tâm O, đường kính AB có:
\(\widehat {APB} = \widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Nên \(\widehat {QPB} = 90^\circ ;\;\widehat {QMA} = 90^\circ \) (hai góc kề bù với hai góc trên).
Suy ra \(\widehat {QPE} + \widehat {QME} = 90^\circ + 90^\circ = 180^\circ \).
Do đó, tứ giác PQME nội tiếp đường tròn.
b) K là điểm chính giữa cung AB nên
Þ AK = KB (liên hệ giữa cung và dây)
Xét ∆AKN và ∆BKM có:
AK = BK (cmt)
\(\widehat {NAK} = \widehat {MBK}\) (Hai góc nội tiếp cùng chắn cung KM)
AN = BM (gt)
Þ ∆AKN = ∆BKM (c.g.c).
c) Xét ∆AMQ và ∆BME có:
\(\widehat {AMQ} = \widehat {BME} = 90^\circ \)
\(\widehat {QAM} = \widehat {EBM}\) (Hai góc nội tiếp cùng chắn cung MP)
Þ ∆AMQ ᔕ ∆BME (g.g)
\( \Rightarrow \frac{{AM}}{{BM}} = \frac{{AQ}}{{BE}} \Rightarrow AM.BE = BM.AQ\)
Mà AN = BM Þ AM.BE = AN.AQ
d) \(\widehat {ABM} = \widehat {RPM}\) (ABMP nội tiếp)
\(\widehat {RPM} = \widehat {QSR}\) (RPMS nội tiếp)
\( \Rightarrow \widehat {ABM} = \widehat {QSR}\) (Hai góc ở vị trí đồng vị)
Þ RS // AB
BP // KM Þ cung KP = cung MB
Þ
\( \Rightarrow \widehat {MOP} = \widehat {KOB} = 90^\circ \) (Hai góc ở tâm chắn hai cung bằng nhau)
Þ ∆OMP nội tiếp đường tròn đường kính PM
PQME nội tiếp đường tròn nên suy ra
Kẻ IC // AQ, ID // BQ \( \Rightarrow \widehat {CID} = \widehat {PQM} = 45^\circ \)
RS = OM = OA = OB = R (không đổi)
Þ C, D là trung điểm của OA, OB Þ C, D cố định
I luôn nhìn CD cố định dưới góc 45°
Þ I nằm trên cung chứa góc 45° vẽ trên đoạn CD cố định.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có AB và AC là tiếp tuyến của (O) \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \).
Xét tứ giác ABOC có:
\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \).
Suy ra tứ giác ABOC là tứ giác nội tiếp đường tròn.
Hay A, B, O, C thuộc 1 đường tròn.
b) Ta có: AB và AC là tiếp tuyến của (O) Þ AB = AC.
Mà OB = OC = R Þ OA là đường trung trực của BC hay OA ^ BC (1)
Xét ∆CBD nội tiếp (O) có BD là đường kính của (O).
Suy ra ∆CBD vuông tại C hay DC ^ BC (2)
Từ (1), (2) Þ DC // OA.
c) Ta có: DC // OA Þ CE // OA Þ OCEA là hình thang (3)
Ta có: \[\widehat {ODE} + \widehat {OBC} = 90^\circ \];
\(\widehat {OBC} + \widehat {BOA} = 90^\circ \).
Suy ra \(\widehat {ODE} = \widehat {BOA}\).
Xét ∆BOA và ∆ODE có:
\(\widehat {ODE} = \widehat {BOA}\) (cmt)
\[\widehat {DOE} = \widehat {OBA} = 90^\circ \]
OB = OD = R
Þ ∆BOA = ∆ODE (g.c.g)
Þ AB = OE (hai cạnh tương ứng)
Mà AB = AC (AB và AC đều là tiếp tuyến chung của (O))
Suy ra OE = AC (4)
Từ (3) và (4) Þ OCEA là hình thang cân.
d) Ta có: \[\widehat {SOI} + \widehat {AOB} = 90^\circ \]
\(\widehat {AOB} + \widehat {OAB} = 90^\circ \)
\(\widehat {OAB} = \widehat {SAO}\)
Suy ra \(\widehat {SOA} = \widehat {SAO}\) Þ ∆SOA cân tại S
Lại có SI là đường trung tuyến \(\left( {OI = IA = \frac{{OA}}{2} = R} \right)\)
Suy ra SI ^ OA Þ KS ^ OA (5)
Ta có ∆KAS có \(\widehat {KAI} = \widehat {SAI}\)
AI ^ KS suy ra KI = SI.
Mà OI ^ AI
Suy ra OKAS là hình bình hành (6)
Từ (5) và (6) suy ra AKOS là hình thoi.
Ta có ∆OAB vuông tại A có OA = 2OD = 2R
\[ \Rightarrow \widehat {OAB} = 30^\circ \Rightarrow \tan \widehat {OAB} = \tan 30^\circ = \frac{{KI}}{{AI}}\]
\[ \Rightarrow KI = \tan 30^\circ .AI = \frac{{\sqrt 3 }}{3}R\]
\[ \Rightarrow KS = \frac{{2\sqrt 3 }}{3}R\].
Vậy \[SAKOS = \frac{{OA.SK}}{2} = \frac{{2R.\frac{{2\sqrt 3 }}{3}R}}{2} = \frac{{2\sqrt 3 }}{3}{R^2}.\]
Lời giải
Lời giải
M là điểm nằm trên đoạn AB và \(AM = \frac{1}{5}AB\)
\( \Rightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AM} + \frac{1}{5}\overrightarrow {MB} \)
\( \Leftrightarrow \frac{4}{5}\overrightarrow {AM} = \frac{1}{5}\overrightarrow {MB} \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {MB} \)
\( \Leftrightarrow \overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.