Câu hỏi:

12/07/2024 6,546

Cho nửa đường tròn (O), đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM.

a) Chứng minh rằng tứ giác PQME nội tiếp đường tròn.

b) Chứng minh: ∆AKN = ∆BKM.

c) Chứng minh: AM . BE = AN . AQ.

d) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp ∆OMP. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét đường tròn tâm O, đường kính AB có:

\(\widehat {APB} = \widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Nên \(\widehat {QPB} = 90^\circ ;\;\widehat {QMA} = 90^\circ \) (hai góc kề bù với hai góc trên).

Suy ra \(\widehat {QPE} + \widehat {QME} = 90^\circ + 90^\circ = 180^\circ \).

Do đó, tứ giác PQME nội tiếp đường tròn.

b) K là điểm chính giữa cung AB nên

Þ AK = KB (liên hệ giữa cung và dây)

Xét ∆AKN và ∆BKM có:

AK = BK (cmt)

\(\widehat {NAK} = \widehat {MBK}\) (Hai góc nội tiếp cùng chắn cung KM)

AN = BM (gt)

Þ ∆AKN = ∆BKM (c.g.c).

c) Xét ∆AMQ và ∆BME có:

\(\widehat {AMQ} = \widehat {BME} = 90^\circ \)

\(\widehat {QAM} = \widehat {EBM}\) (Hai góc nội tiếp cùng chắn cung MP)

Þ ∆AMQ ∆BME (g.g)

\( \Rightarrow \frac{{AM}}{{BM}} = \frac{{AQ}}{{BE}} \Rightarrow AM.BE = BM.AQ\)

Mà AN = BM Þ AM.BE = AN.AQ

d) \(\widehat {ABM} = \widehat {RPM}\) (ABMP nội tiếp)

\(\widehat {RPM} = \widehat {QSR}\) (RPMS nội tiếp)

\( \Rightarrow \widehat {ABM} = \widehat {QSR}\) (Hai góc ở vị trí đồng vị)

Þ RS // AB

BP // KM Þ cung KP = cung MB

Þ

\( \Rightarrow \widehat {MOP} = \widehat {KOB} = 90^\circ \) (Hai góc ở tâm chắn hai cung bằng nhau)

Þ ∆OMP nội tiếp đường tròn đường kính PM

PQME nội tiếp đường tròn nên suy ra

Media VietJack
Kẻ IC // AQ, ID // BQ \( \Rightarrow \widehat {CID} = \widehat {PQM} = 45^\circ \)

RS = OM = OA = OB = R (không đổi)

Þ C, D là trung điểm của OA, OB Þ C, D cố định

I luôn nhìn CD cố định dưới góc 45°

Þ I nằm trên cung chứa góc 45° vẽ trên đoạn CD cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack 

a) Ta có AB và AC là tiếp tuyến của (O) \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \).

Xét tứ giác ABOC có:

\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \).

Suy ra tứ giác ABOC là tứ giác nội tiếp đường tròn.

Hay A, B, O, C thuộc 1 đường tròn.

b) Ta có: AB và AC là tiếp tuyến của (O) Þ AB = AC.

Mà OB = OC = R Þ OA là đường trung trực của BC hay OA ^ BC (1)

Xét ∆CBD nội tiếp (O) có BD là đường kính của (O).

Suy ra ∆CBD vuông tại C hay DC ^ BC (2)

Từ (1), (2) Þ DC // OA.

c) Ta có: DC // OA Þ CE // OA Þ OCEA là hình thang (3)

Ta có: \[\widehat {ODE} + \widehat {OBC} = 90^\circ \];

\(\widehat {OBC} + \widehat {BOA} = 90^\circ \).

Suy ra \(\widehat {ODE} = \widehat {BOA}\).

Xét ∆BOA và ∆ODE có:

\(\widehat {ODE} = \widehat {BOA}\) (cmt)

\[\widehat {DOE} = \widehat {OBA} = 90^\circ \]

OB = OD = R

Þ ∆BOA = ∆ODE (g.c.g)

Þ AB = OE (hai cạnh tương ứng)

Mà AB = AC (AB và AC đều là tiếp tuyến chung của (O))

Suy ra OE = AC (4)

Từ (3) và (4) Þ OCEA là hình thang cân.

d) Ta có: \[\widehat {SOI} + \widehat {AOB} = 90^\circ \]

\(\widehat {AOB} + \widehat {OAB} = 90^\circ \)

\(\widehat {OAB} = \widehat {SAO}\)

Suy ra \(\widehat {SOA} = \widehat {SAO}\) Þ ∆SOA cân tại S

Lại có SI là đường trung tuyến \(\left( {OI = IA = \frac{{OA}}{2} = R} \right)\)

Suy ra SI ^ OA Þ KS ^ OA (5)

Ta có ∆KAS có \(\widehat {KAI} = \widehat {SAI}\)

AI ^ KS suy ra KI = SI.

Mà OI ^ AI

Suy ra OKAS là hình bình hành (6)

Từ (5) và (6) suy ra AKOS là hình thoi.

Ta có ∆OAB vuông tại A có OA = 2OD = 2R

\[ \Rightarrow \widehat {OAB} = 30^\circ \Rightarrow \tan \widehat {OAB} = \tan 30^\circ = \frac{{KI}}{{AI}}\]

\[ \Rightarrow KI = \tan 30^\circ .AI = \frac{{\sqrt 3 }}{3}R\]

\[ \Rightarrow KS = \frac{{2\sqrt 3 }}{3}R\].

Vậy \[SAKOS = \frac{{OA.SK}}{2} = \frac{{2R.\frac{{2\sqrt 3 }}{3}R}}{2} = \frac{{2\sqrt 3 }}{3}{R^2}.\]

Lời giải

Lời giải

M là điểm nằm trên đoạn AB và \(AM = \frac{1}{5}AB\)

\( \Rightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AM} + \frac{1}{5}\overrightarrow {MB} \)

\( \Leftrightarrow \frac{4}{5}\overrightarrow {AM} = \frac{1}{5}\overrightarrow {MB} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {MB} \)

\( \Leftrightarrow \overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP