Câu hỏi:

12/07/2024 4,479

Cho nửa đường tròn (O) đường kính AB và K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (khác K; B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM. Gọi Q là giao điểm của các đường thẳng AP, BM.

a) So sánh hai tam giác: ΔAKN và ΔBKM.

b) Chứng minh: ΔKMN vuông cân.

c) Tứ giác ANKP là hình gì? Vì sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) K là điểm chính giữa cung AB nên

Þ AK = KB (liên hệ giữa cung và dây)

Xét ∆AKN và ∆BKM có:

AK = BK (cmt)

\(\widehat {NAK} = \widehat {MBK}\) (Hai góc nội tiếp cùng chắn cung KM)

AN = BM (gt)

Þ ∆AKN = ∆BKM (c.g.c)

b) ∆AKN = ∆BKM

\( \Rightarrow \widehat {AKN} = \widehat {BKM}\) và KN = KM

Khi đó: \[\widehat {NKM} = \widehat {NKB} + \widehat {BKM} = \widehat {NKB} + \widehat {AKN} = \widehat {AKB} = 90^\circ \]

Mà KN = KM (cmt)

Þ ∆KMN là tam giác vuông cân tại K

c) Vì K nằm chính giữa cung AB với AB là đường kính

\( \Rightarrow \widehat {KPB} = 45^\circ \)

Mà BP // KM Þ KMBP là hình thang cân

Þ KB = PM Þ \( \Rightarrow \widehat {PAM} = \widehat {PBM} = 45^\circ \)

Mà \(\widehat {KPA} = 180^\circ - \widehat {KBA} = 135^\circ \Rightarrow \widehat {KPA} + \widehat {PAM} = 180^\circ \)

Þ PK // AM

Lại có PK = MB = AN Þ ANKP là hình bình hành.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 12/07/2024 36,974

Câu 2:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 12/07/2024 36,946

Câu 3:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 12/07/2024 20,624

Câu 4:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b) AE . AF = AC2.

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.

Xem đáp án » 12/07/2024 18,717

Câu 5:

Cho tam giác ABC có AB = 4, AC = 5, BC = 6. Tính \(\cos \left( {\widehat B + \widehat C} \right)\).

Xem đáp án » 12/07/2024 18,129

Câu 6:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC}\) = 30°. Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 14,463

Câu 7:

Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm.

a) Chứng minh ∆HBA ∆ABC.

b) Tính BC, AH, HC.

c) Chứng minh AH2 = HB . HC.

Xem đáp án » 12/07/2024 10,466
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua