Câu hỏi:

29/03/2023 942

Gieo một con súc sắc cân đối đồng chất hai lần. Tính xác suất của biến cố:

a) Tổng số chấm hai mặt xuất hiện bằng 8.

b) Tích số chấm hai mặt xuất hiện là số lẻ.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Số phần tử của không gian mẫu là: \(n\left( \Omega \right) = 6.6 = 36\).

Gọi A là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.

Gọi số chấm trên mặt khi gieo lần một là x.

Số chấm trên mặt khi gieo lần hai là y.

Theo bài ra ta có:

\(\left\{ \begin{array}{l}1 \le x \le 6\\1 \le y \le 6\\x + y = 8\end{array} \right.\)

Þ (x; y) = {(2; 6), (3; 5), (4; 4), (6; 2), (5; 3)}

Khi đó số kết quả thuận lợi của biến cố là: \(n\left( A \right) = 5\).

Vậy xác suất cần tính là \(P\left( A \right) = \frac{5}{{36}}\).

b) Số phần tử của không gian mẫu là: \(n\left( \Omega \right) = 6.6 = 36\).

Gọi B là biến cố “Tích số chấm trên mặt hai lần gieo là số lẻ”.

Gọi số chấm trên mặt khi gieo lần một là x.

Số chấm trên mặt khi gieo lần hai là y.

Theo bài ra, ta có:

\(\left\{ \begin{array}{l}1 \le x \le 6\\1 \le y \le 6\\x\cancel{ \vdots }2,\;y\cancel{ \vdots }2\end{array} \right.\)

Þ x, y = {1; 3; 5}.

Khi đó, số kết quả thuận lợi của biến cố là: \(n\left( B \right) = 3.3 = 9\).

Vậy xác suất cần tính là \(P\left( B \right) = \frac{9}{{36}} = \frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 12/07/2024 36,356

Câu 2:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 12/07/2024 28,488

Câu 3:

Cho tam giác ABC có AB = 4, AC = 5, BC = 6. Tính \(\cos \left( {\widehat B + \widehat C} \right)\).

Xem đáp án » 12/07/2024 17,645

Câu 4:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC}\) = 30°. Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 12,725

Câu 5:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 12/07/2024 12,724

Câu 6:

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh: AMON là hình thoi.

b) Chứng minh: MN là tiếp tuyến của đường tròn.

c) Tính diện tích AMON.

Xem đáp án » 12/07/2024 8,260

Câu 7:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b) AE . AF = AC2.

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.

Xem đáp án » 12/07/2024 7,985

Bình luận


Bình luận