Câu hỏi:

13/07/2024 3,799

Cho hình vuông ABCD tâm O cạnh a. Gọi M là trung điểm AB. Tính độ dài \[\overrightarrow {AB} ,\;\,\,\overrightarrow {AC} ,\,\,\;\overrightarrow {OA} ,\;\,\,\overrightarrow {OM} ,\,\,\;\overrightarrow {OA} + \overrightarrow {OB} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

+) Vì ABCD là hình vuông nên \(\left| {\overrightarrow {AB} } \right| = AB = a\)

+) \(\left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

+) Vì O là tâm hình vuông nên \(\left| {\overrightarrow {OA} } \right| = OA = OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\).

+) Vì M là trung điểm của AB nên OM là đường trung bình ∆ABD nên ta có:

\(\left| {\overrightarrow {OM} } \right| = OM = \frac{{AD}}{2} = \frac{a}{2}\).

+) \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OE} = 2\overrightarrow {OM} \) (dựng AOBE là hình bình hành)

\( \Rightarrow \left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = \left| {2\overrightarrow {OM} } \right| = 2OM = a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:

\(C_8^2.C_5^2 = 280\) (cách).

• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:

\(C_8^2.C_3^2 = 84\) (cách).

• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:

\(C_8^2.C_5^1.C_3^1 = 420\) (cách).

Vậy có: 280 + 84 + 420 = 784 (cách).

Lời giải

Lời giải

Ta có sin x.sin 7x = sin 3x.sin 5x

\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)

Û cos 8x − cos 6x = cos 8x − cos 2x

Û cos 6x = cos 2x

\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP