Câu hỏi:
12/07/2024 365Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
\(\sin 2x + \cos \left( {6x + \frac{\pi }{3}} \right) = 0\)
\( \Leftrightarrow \cos \left( {6x + \frac{\pi }{3}} \right) = - \sin 2x\)
\[ \Leftrightarrow \cos \left( {6x + \frac{\pi }{3}} \right) = \cos \left( {2x + \frac{\pi }{2}} \right)\]
\( \Leftrightarrow \left[ \begin{array}{l}6x + \frac{\pi }{3} = 2x + \frac{\pi }{2} + k2\pi \\6x + \frac{\pi }{3} = - 2x - \frac{\pi }{2} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{6} + k2\pi \\8x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\frac{\pi }{2}\\x = - \frac{{5\pi }}{{48}} + k\frac{\pi }{4}\end{array} \right.\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!