Câu hỏi:
12/07/2024 1,508Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng: \(AB.\cos B + AC.\cos C = BC.\)
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng: \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) ∆ABC vuông tại A, đường cao AH
\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{6^2} + {8^2}} = 10\;cm\)
Ta có:
\(\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5} \Rightarrow \widehat B = {53^ \circ } \Rightarrow \widehat C = {37^ \circ }\)
Có AH.BC = AB.AC (Hệ thức về cạnh và đường cao trong tam giác vuông)
\( \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{6.8}}{{10}} = 4,8\;cm\)
b) ∆HBA vuông tại H (AH ^ BC) Þ BH = AB.cos B
Tương tự: ∆HCA vuông tại H (AH ^ BC) Þ CH = AC.cos C
Mà BH + CH = BC Þ \(AB.\cos B + AC.\cos C = BC.\)
c) ∆ABC vuông tại A, đường cao AH
\( \Rightarrow \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\) (1)
Ta có: DE // AH (cùng vuông góc với BC)
\( \Rightarrow \frac{{DE}}{{AH}} = \frac{{CD}}{{AC}} = \frac{2}{3} \Rightarrow \frac{{D{E^2}}}{{A{H^2}}} = \frac{4}{9} \Rightarrow \frac{1}{{A{H^2}}} = \frac{4}{{9D{E^2}}}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!