Câu hỏi:

19/08/2025 4,743 Lưu

Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.

a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.

b) Chứng minh rằng: \(AB.\cos B + AC.\cos C = BC.\)

c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng: \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) ∆ABC vuông tại A, đường cao AH

\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{6^2} + {8^2}} = 10\;cm\)

Ta có:

\(\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5} \Rightarrow \widehat B = {53^ \circ } \Rightarrow \widehat C = {37^ \circ }\)

Có AH.BC = AB.AC (Hệ thức về cạnh và đường cao trong tam giác vuông)

\( \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{6.8}}{{10}} = 4,8\;cm\)

b) ∆HBA vuông tại H (AH ^ BC) Þ BH = AB.cos B

Tương tự: ∆HCA vuông tại H (AH ^ BC) Þ CH = AC.cos C

Mà BH + CH = BC Þ \(AB.\cos B + AC.\cos C = BC.\)

c) ∆ABC vuông tại A, đường cao AH

\( \Rightarrow \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\) (1)

Ta có: DE // AH (cùng vuông góc với BC)

\( \Rightarrow \frac{{DE}}{{AH}} = \frac{{CD}}{{AC}} = \frac{2}{3} \Rightarrow \frac{{D{E^2}}}{{A{H^2}}} = \frac{4}{9} \Rightarrow \frac{1}{{A{H^2}}} = \frac{4}{{9D{E^2}}}\) (2)

Từ (1) và (2) suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) ∆ABC vuông tại A

\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{4^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 8\;(cm)\)

\(\sin \widehat {ACB} = \frac{{AB}}{{BC}} = \frac{4}{8} = \frac{1}{2} \Rightarrow \widehat {ACB} = 30^\circ \)

\( \Rightarrow \widehat {ABC} = 180^\circ - \widehat {BAC} - \widehat {ACB} = 180^\circ - 90^\circ - 30^\circ = 60^\circ \)

b) Tứ giác ADHE có \(\widehat A = \widehat D = \widehat E = 90^\circ \) nên tứ giác ADHE là hình chữ nhật

Þ DE = AH và \(\widehat {DHE} = 90^\circ \)

Þ ∆DHE vuông tại H Þ DH2 + EH2 = DE2

Xét ∆ADH và ∆HDB có:

\(\widehat {ADH} = \widehat {HDB}\;\left( { = {{90}^ \circ }} \right)\)

\(\widehat {DAH} = \widehat {DHB}\) (cùng phụ \(\widehat {AHD}\))

Do đó ∆ADH ∆HDB (g.g)

\( \Rightarrow \frac{{EA}}{{EH}} = \frac{{EH}}{{CE}} \Rightarrow EA.EC = E{H^2}\)

Þ BD.DA + CE.EA = DH2 + EH2 = DE2 = AH2.

Vậy BD.DA + CE.EA = AH2 (đpcm).

c) Ta có \(\widehat {AIB} = \widehat {AHB} = 90^\circ \) nên I, H thuộc đường tròn đường kính AB

Þ Tứ giác ABHI nội tiếp đường tròn đường kính AB

\( \Rightarrow \widehat {BAH} = \widehat {BIH}\) (góc nội tiếp chắn cung BM)

\(\widehat {BAH} = \widehat {BCM}\) (cùng phụ \(\widehat {CAM}\))

Nên \(\widehat {BIH} = \widehat {BCM}\)

Xét ∆BIH và ∆BCM có:

\(\widehat B\) chung

\(\widehat {BIH} = \widehat {BCM}\) (cmt)

Do đó ∆BIH ∆BCM (g.g)

Suy ra \(\frac{{BH}}{{BM}} = \frac{{HI}}{{CM}}\) (các cạnh tương ứng tỉ lệ)

Xét ∆BAM và ∆BCA có:

\(\widehat B\) chung

\(\widehat {BMA} = \widehat {BAC}\;\left( { = {{90}^ \circ }} \right)\) (cmt)

Do đó ∆BAM ∆BCA (g.g)

\( \Rightarrow \frac{{BH}}{{BA}} = \frac{{AB}}{{BC}} \Rightarrow BH = \frac{{A{B^2}}}{{BC}} \Rightarrow \frac{{A{B^2}}}{{BC.BM}} = \frac{{HI}}{{CM}}\)

Khi đó \(\sin \widehat {AMB}\,\,.\,\,\sin \widehat {ACB} = \frac{{AB}}{{BM}}\,.\,\frac{{AB}}{{BC}} = \frac{{A{B^2}}}{{BM\,.\,BC}} = \frac{{HI}}{{CM}}\).

Vậy \[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\] (đpcm).

Lời giải

Lời giải

• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:

\(C_8^2.C_5^2 = 280\) (cách).

• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:

\(C_8^2.C_3^2 = 84\) (cách).

• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:

\(C_8^2.C_5^1.C_3^1 = 420\) (cách).

Vậy có: 280 + 84 + 420 = 784 (cách).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP