Câu hỏi:
12/07/2024 2,258
Cho tam giác ABC vuông tại A, đường cao AH (h.5). Giải bài toán trong mỗi trường hợp sau:
a) Cho AH = 16, BH = 25. Tính AB, AC, BC, CH.
b) Cho AB = 12, BH = 6. Tính AH, AC, BC, CH.
Cho tam giác ABC vuông tại A, đường cao AH (h.5). Giải bài toán trong mỗi trường hợp sau:
a) Cho AH = 16, BH = 25. Tính AB, AC, BC, CH.
b) Cho AB = 12, BH = 6. Tính AH, AC, BC, CH.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) – Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: AH2 = BH.CH
\( \Rightarrow CH = \frac{{A{H^2}}}{{BH}} = \frac{{{{16}^2}}}{{25}} = 10,24\)
BC = BH + CH = 25 + 10,24 = 35,24.
– Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AB2 = BH.BC
\( \Rightarrow AB = \sqrt {BH\,.\,BC} = \sqrt {25\,.\,35,24} = 29,68\)
AC2 = HC.BC
\( \Rightarrow AC = \sqrt {CH\,.\,BC} = \sqrt {10,24\,.\,35,24} = 18,99\)
b) – Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AB2 = BH.BC
\( \Rightarrow BC = \frac{{A{B^2}}}{{BH}} = \frac{{{{12}^2}}}{6} = 24\)
CH = BC − BH = 24 − 6 = 18
– Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
AC2 = HC.BC
\( \Rightarrow AC = \sqrt {CH\,.\,BC} = \sqrt {18\,.\,24} = 20,78\)
– Theo hệ thức liên hệ giữa đường cao và hình chiếu cạnh góc vuông, ta có:
AH2 = BH.CH
\( \Rightarrow AH = \sqrt {HB\,.\,HC} = \sqrt {6\,.\,18} = 6\sqrt 3 \)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:
\(C_8^2.C_5^2 = 280\) (cách).
• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:
\(C_8^2.C_3^2 = 84\) (cách).
• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:
\(C_8^2.C_5^1.C_3^1 = 420\) (cách).
Vậy có: 280 + 84 + 420 = 784 (cách).
Lời giải
Lời giải
Ta có sin x.sin 7x = sin 3x.sin 5x
\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)
Û cos 8x − cos 6x = cos 8x − cos 2x
Û cos 6x = cos 2x
\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.