Câu hỏi:
31/03/2023 1,481
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh AB2 = BH.BC.
b) Chứng minh AC2 = CH.BC.
c) Chứng minh \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\).
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh AB2 = BH.BC.
b) Chứng minh AC2 = CH.BC.
c) Chứng minh \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆HAB và ∆ACB có:
\(\widehat {AHB} = \widehat {CAB}\left( { = {{90}^ \circ }} \right)\)
\(\widehat B\) chung
Do đó ∆HAB ᔕ ∆ACB (g.g)
Suy ra \(\frac{{HB}}{{AB}} = \frac{{AB}}{{CB}}\) (các cặp cạnh tương ứng tỉ lệ).
Vậy \(A{B^2} = BH\,.\,BC\) (đpcm)
b) Xét ∆HAC và ∆ABC có:
\(\widehat {AHC} = \widehat {BAC}\left( { = {{90}^ \circ }} \right)\)
\(\widehat C\): góc chung
Þ ∆HAC ᔕ ∆ABC (g.g)
\( \Rightarrow \frac{{HC}}{{AC}} = \frac{{AC}}{{BC}} \Rightarrow A{C^2} = CH\,.\,CB\) (đpcm)
c) Ta có: \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{BH\,.\,BC}} + \frac{1}{{CH\,.\,CB}}\)
\( = \frac{1}{{BC}}.\left( {\frac{1}{{BH}} + \frac{1}{{CH}}} \right) = \frac{1}{{BC}}.\frac{{CH + BH}}{{BH\,.\,CH}}\)
\( = \frac{1}{{BC}}.\frac{{BC}}{{BH\,.\,CH}} = \frac{1}{{BH\,.\,CH}}\) (1)
Lại có \(\widehat {HAB} = \widehat {HCA}\) (hai góc phụ \(\widehat {HAC}\))
Xét ∆HAB và ∆HCA có:
\(\widehat {HAB} = \widehat {HCA}\) (cmt)
\(\widehat {AHB} = \widehat {CHA}\;\left( { = {{90}^ \circ }} \right)\)
Þ ∆HAB ᔕ ∆HCA (g.g)
\( \Rightarrow \frac{{HA}}{{HC}} = \frac{{HB}}{{HA}} \Rightarrow A{H^2} = CH\,.\,BH\) (2)
Từ (1) và (2) suy ra \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\) (đpcm).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:
\(C_8^2.C_5^2 = 280\) (cách).
• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:
\(C_8^2.C_3^2 = 84\) (cách).
• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:
\(C_8^2.C_5^1.C_3^1 = 420\) (cách).
Vậy có: 280 + 84 + 420 = 784 (cách).
Lời giải
Lời giải
Ta có sin x.sin 7x = sin 3x.sin 5x
\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)
Û cos 8x − cos 6x = cos 8x − cos 2x
Û cos 6x = cos 2x
\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.