Câu hỏi:

12/07/2024 2,662 Lưu

Cho tam giác ABC vuông tại A có \[\widehat {ABC} = 60^\circ \] và AB = 8 cm. Kẻ đường cao AH (H thuộc cạnh BC). Tính AH, AC, BC​​

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Ta có:

\(\cos B = \frac{{AB}}{{BC}} \Rightarrow BC = \frac{{AB}}{{\cos C}} = \frac{8}{{\cos {{60}^ \circ }}} = 16\;(cm)\);

\(AB = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{16}^2} - {8^2}} = 8\sqrt 3 \;(cm)\);

\(AH\,.\,BC = AB\,.\,AC \Leftrightarrow AH = \frac{{AB\,.\,AC}}{{BC}} = \frac{{8\,\,.\,\,8\sqrt 3 }}{{16}} = 4\sqrt 3 \;\,(cm)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:

\(C_8^2.C_5^2 = 280\) (cách).

• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:

\(C_8^2.C_3^2 = 84\) (cách).

• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:

\(C_8^2.C_5^1.C_3^1 = 420\) (cách).

Vậy có: 280 + 84 + 420 = 784 (cách).

Lời giải

Lời giải

Ta có sin x.sin 7x = sin 3x.sin 5x

\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)

Û cos 8x − cos 6x = cos 8x − cos 2x

Û cos 6x = cos 2x

\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP