Cho hình chữ nhật ABCD có (AD < AB). Qua C kẻ đường thẳng vuông góc với đường chéo AC tại C, cắt đường thẳng AD, AB lần lượt tại M, N.
a) Chứng minh rằng AB.AN = AD.AM.
b) Cho AD = 3 cm, AB = 4 cm. Tính DM và SAMN.
c) Chứng minh CD.CB = AB.AD.
d) Gọi E là trung điểm của MC, kẻ CH vuông DB tại H. Cho EB cắt CH tại K. Chứng minh K là trung điểm của CH.
Cho hình chữ nhật ABCD có (AD < AB). Qua C kẻ đường thẳng vuông góc với đường chéo AC tại C, cắt đường thẳng AD, AB lần lượt tại M, N.
a) Chứng minh rằng AB.AN = AD.AM.
b) Cho AD = 3 cm, AB = 4 cm. Tính DM và SAMN.
c) Chứng minh CD.CB = AB.AD.
d) Gọi E là trung điểm của MC, kẻ CH vuông DB tại H. Cho EB cắt CH tại K. Chứng minh K là trung điểm của CH.
Quảng cáo
Trả lời:
Lời giải

a) Xét ∆ACN vuông tại C có CB ^ AN.
Þ AC2 = AB.AN (Hệ thức lượng trong tam giác vuông)
Tương tự AC2 = AD.AM
Þ AB.AN = AD.AM
b) Ta có ABCD là hình chữ nhật Þ CD = AB = 4
Xét ∆ACM vuông tại C, CD ^ AM
Þ CD2 = DA.DM
\( \Rightarrow DM = \frac{{C{D^2}}}{{AD}} = \frac{{16}}{3}\)
\( \Rightarrow AM = AD + DM = \frac{{25}}{3}\)
Mà \(AC = \sqrt {A{B^2} + A{D^2}} = 5\)
AC2 = AB.AN \( \Rightarrow AN = \frac{{A{C^2}}}{{AB}} = \frac{{25}}{4}\)
\( \Rightarrow {S_{AMN}} = \frac{1}{2}AM.AN = \frac{{625}}{{24}}\)
c) Ta có: CD.CB = AB.AD = 12.
d) Gọi BC Ç DE = F.
Ta có E là trng điểm CM, ∆DCM vuông tại D
\[ \Rightarrow \widehat {EDC} = \widehat {ECD} = \widehat {MCD} = {90^ \circ } - \widehat {ACD} = \widehat {DAC} = \widehat {ADB}\]
\( \Rightarrow \widehat {FDB} = \widehat {FDC} + \widehat {CDB} = \widehat {ADB} + \widehat {CDB} = \widehat {ADC} = 90^\circ \)
Þ FD ^ BD Þ DF // CH
Ta có: CF // DM \( \Rightarrow \frac{{ED}}{{EF}} = \frac{{EM}}{{EC}} = 1\)
Þ ED = EF Þ E là trung điểm DF
Mà CH // DF
\( \Rightarrow \frac{{HK}}{{DE}} = \frac{{BK}}{{BE}} = \frac{{CK}}{{EF}}\)
Þ KH = KC.
Vậy K là trung điểm của CH.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

a) ∆ABC vuông tại A
\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{4^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 8\;(cm)\)
\(\sin \widehat {ACB} = \frac{{AB}}{{BC}} = \frac{4}{8} = \frac{1}{2} \Rightarrow \widehat {ACB} = 30^\circ \)
\( \Rightarrow \widehat {ABC} = 180^\circ - \widehat {BAC} - \widehat {ACB} = 180^\circ - 90^\circ - 30^\circ = 60^\circ \)
b) Tứ giác ADHE có \(\widehat A = \widehat D = \widehat E = 90^\circ \) nên tứ giác ADHE là hình chữ nhật
Þ DE = AH và \(\widehat {DHE} = 90^\circ \)
Þ ∆DHE vuông tại H Þ DH2 + EH2 = DE2
Xét ∆ADH và ∆HDB có:
\(\widehat {ADH} = \widehat {HDB}\;\left( { = {{90}^ \circ }} \right)\)
\(\widehat {DAH} = \widehat {DHB}\) (cùng phụ \(\widehat {AHD}\))
Do đó ∆ADH ᔕ ∆HDB (g.g)
\( \Rightarrow \frac{{EA}}{{EH}} = \frac{{EH}}{{CE}} \Rightarrow EA.EC = E{H^2}\)
Þ BD.DA + CE.EA = DH2 + EH2 = DE2 = AH2.
Vậy BD.DA + CE.EA = AH2 (đpcm).
c) Ta có \(\widehat {AIB} = \widehat {AHB} = 90^\circ \) nên I, H thuộc đường tròn đường kính AB
Þ Tứ giác ABHI nội tiếp đường tròn đường kính AB
\( \Rightarrow \widehat {BAH} = \widehat {BIH}\) (góc nội tiếp chắn cung BM)
Mà \(\widehat {BAH} = \widehat {BCM}\) (cùng phụ \(\widehat {CAM}\))
Nên \(\widehat {BIH} = \widehat {BCM}\)
• Xét ∆BIH và ∆BCM có:
\(\widehat B\) chung
\(\widehat {BIH} = \widehat {BCM}\) (cmt)
Do đó ∆BIH ᔕ ∆BCM (g.g)
Suy ra \(\frac{{BH}}{{BM}} = \frac{{HI}}{{CM}}\) (các cạnh tương ứng tỉ lệ)
• Xét ∆BAM và ∆BCA có:
\(\widehat B\) chung
\(\widehat {BMA} = \widehat {BAC}\;\left( { = {{90}^ \circ }} \right)\) (cmt)
Do đó ∆BAM ᔕ ∆BCA (g.g)
\( \Rightarrow \frac{{BH}}{{BA}} = \frac{{AB}}{{BC}} \Rightarrow BH = \frac{{A{B^2}}}{{BC}} \Rightarrow \frac{{A{B^2}}}{{BC.BM}} = \frac{{HI}}{{CM}}\)
Khi đó \(\sin \widehat {AMB}\,\,.\,\,\sin \widehat {ACB} = \frac{{AB}}{{BM}}\,.\,\frac{{AB}}{{BC}} = \frac{{A{B^2}}}{{BM\,.\,BC}} = \frac{{HI}}{{CM}}\).
Vậy \[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\] (đpcm).
Lời giải
Lời giải
Ta có sin x.sin 7x = sin 3x.sin 5x
\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)
Û cos 8x − cos 6x = cos 8x − cos 2x
Û cos 6x = cos 2x
\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.