Câu hỏi:
12/07/2024 998Cho hình chữ nhật ABCD có AB > BC. Qua B kẻ đường thẳng vuông góc với AC, đường thẳng này cắt AC tại H, cắt CD tại M.
a) Chứng minh ΔCMH ᔕ ΔCAD.
b) Chứng minh BC2 = CM.CD. Tính độ dài đoạn MC, biết AB = 8 cm, BC = 6 cm.
c) Kẻ MK vuông góc với AB tại K, MK cắt AC tại điểm I. Chứng minh \(\widehat {BIM} = \widehat {AMC}.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆CMH và ∆CAD có:
\(\widehat {ACD}\) chung
\(\widehat {CDA} = \widehat {CHM} = {90^ \circ }\)
Þ ΔCMH ᔕ ΔCAD (g.g)
b) Vì ABCD là hình chữ nhật nên \({\widehat D_1} = {\widehat C_1}\).
Mà \({\widehat C_1} + {\widehat M_1} = {90^ \circ }\) và \({\widehat B_1} + {\widehat M_1} = 90^\circ \) nên \({\widehat B_1} = {\widehat D_1}\).
Xét ∆BCM và ∆DCB có:
\({\widehat B_1} = {\widehat D_1}\) (cmt)
\(\widehat {BCM} = \widehat {DCB} = 90^\circ \) (gt)
Do đó ΔBCM ᔕ ΔDCB (g.g)
\( \Rightarrow \frac{{BC}}{{CM}} = \frac{{CD}}{{BC}} \Rightarrow B{C^2} = CM.CD\)
Vì ABCD là hình chữ nhật nên CD = AB = 8 cm
Theo trên BC2 = CM.CD Þ 62 = 8.CM
\( \Rightarrow CM = \frac{9}{2}\;cm\)
c) Gọi P là giao điểm của BI và AM.
Xét ∆ABM có AH, MK là hai đường cao cắt nhau tại I nên I là trực tâm tam giác ABM.
Suy ra BP ^ MA \( \Rightarrow \widehat {KBP} = \widehat {BAP} = 90^\circ \)
\({\widehat A_1} + \widehat {BAP} = 90^\circ \Rightarrow {\widehat A_1} = \widehat {KBI}\)
Xét ∆AMD và ∆BKI có:
\(\widehat {ADM} = \widehat {BKI} = 90^\circ \)
\({\widehat A_1} = \widehat {KBI}\) (cmt)
Do đó ΔAMD ᔕ ΔBKI (g.g)
Suy ra \({\widehat M_2} = {\widehat I_1}\) (hai góc tương ứng).
Mà \({\widehat M_2} + \widehat {AMC} = 180^\circ \) và \({\widehat I_1} + \widehat {BIM} = 180^\circ \).
Vậy \(\widehat {BIM} = \widehat {AMC}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 5:
Câu 6:
Câu 7:
Cho đường tròn tâm O đường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA (K và A nằm cùng phía đối với BC) tiếp tuyến đường trong tâm O tại C cắt ở I , OI cắt tại H.
a) Chứng minh tam giác ABC là tam giác vuông tại A.
b) Chứng minh IA là tiếp tuyến của đường tròn tâm O.
c) Cho BC = 30 cm; AB = 18 cm, tính các độ dài OI và CI.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!