Câu hỏi:

12/07/2024 2,554

Cho hình chữ nhật ABCD có AB > BC. Qua B kẻ đường thẳng vuông góc với AC, đường thẳng này cắt AC tại H, cắt CD tại M.

a) Chứng minh ΔCMH ΔCAD.

b) Chứng minh BC2 = CM.CD. Tính độ dài đoạn MC, biết AB = 8 cm, BC = 6 cm.

c) Kẻ MK vuông góc với AB tại K, MK cắt AC tại điểm I. Chứng minh \(\widehat {BIM} = \widehat {AMC}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét ∆CMH và ∆CAD có:

\(\widehat {ACD}\) chung

\(\widehat {CDA} = \widehat {CHM} = {90^ \circ }\)

Þ ΔCMH ΔCAD (g.g)

b) Vì ABCD là hình chữ nhật nên \({\widehat D_1} = {\widehat C_1}\).

\({\widehat C_1} + {\widehat M_1} = {90^ \circ }\)\({\widehat B_1} + {\widehat M_1} = 90^\circ \) nên \({\widehat B_1} = {\widehat D_1}\).

Xét ∆BCM và ∆DCB có:

\({\widehat B_1} = {\widehat D_1}\) (cmt)

\(\widehat {BCM} = \widehat {DCB} = 90^\circ \) (gt)

Do đó ΔBCM ΔDCB (g.g)

\( \Rightarrow \frac{{BC}}{{CM}} = \frac{{CD}}{{BC}} \Rightarrow B{C^2} = CM.CD\)

Vì ABCD là hình chữ nhật nên CD = AB = 8 cm

Theo trên BC2 = CM.CD Þ 62 = 8.CM

\( \Rightarrow CM = \frac{9}{2}\;cm\)

c) Gọi P là giao điểm của BI và AM.

Xét ∆ABM có AH, MK là hai đường cao cắt nhau tại I nên I là trực tâm tam giác ABM.

Suy ra BP ^ MA \( \Rightarrow \widehat {KBP} = \widehat {BAP} = 90^\circ \)

\({\widehat A_1} + \widehat {BAP} = 90^\circ \Rightarrow {\widehat A_1} = \widehat {KBI}\)

Xét ∆AMD và ∆BKI có:

\(\widehat {ADM} = \widehat {BKI} = 90^\circ \)

\({\widehat A_1} = \widehat {KBI}\) (cmt)

Do đó ΔAMD ΔBKI (g.g)

Suy ra \({\widehat M_2} = {\widehat I_1}\) (hai góc tương ứng).

\({\widehat M_2} + \widehat {AMC} = 180^\circ \)\({\widehat I_1} + \widehat {BIM} = 180^\circ \).

Vậy \(\widehat {BIM} = \widehat {AMC}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:

\(C_8^2.C_5^2 = 280\) (cách).

• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:

\(C_8^2.C_3^2 = 84\) (cách).

• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:

\(C_8^2.C_5^1.C_3^1 = 420\) (cách).

Vậy có: 280 + 84 + 420 = 784 (cách).

Lời giải

Lời giải

Ta có sin x.sin 7x = sin 3x.sin 5x

\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)

Û cos 8x − cos 6x = cos 8x − cos 2x

Û cos 6x = cos 2x

\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay