Câu hỏi:
12/07/2024 2,539Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Gọi G là giao điểm của hai trung tuyến BM, CN.
Áp dụng công thức tính trung tuyến, ta có:
• \(G{B^2} = \frac{4}{9}B{M^2} = \frac{1}{9}\left( {2{a^2} + 2{c^2} - {b^2}} \right)\);
• \(G{C^2} = \frac{4}{9}C{N^2} = \frac{1}{9}\left( {2{a^2} + 2{b^2} - {c^2}} \right)\).
BM và CN vuông góc với nhau khi BG2 + CG2 = BC2.
\( \Leftrightarrow \frac{1}{9}\left( {2{a^2} + 2{c^2} - {b^2}} \right) + \frac{1}{9}\left( {2{a^2} + 2{b^2} - {c^2}} \right) = {a^2}\)
Û 4a2 + b2 + c2 = 9a2
Û b2 + c2 = 5a2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!