Câu hỏi:
31/03/2023 303
Chứng minh: \(\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {100} }} < 18\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Ta có \(\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {100} }}\)
\[ = \frac{2}{{2\sqrt 2 }} + \frac{2}{{2\sqrt 3 }} + \frac{2}{{2\sqrt 4 }} + ... + \frac{2}{{2\sqrt {100} }}\]
\( < \frac{2}{{\sqrt 1 + \sqrt 2 }} + \frac{2}{{\sqrt 2 + \sqrt 3 }} + \frac{2}{{\sqrt 3 + \sqrt 4 }} + ... + \frac{2}{{\sqrt {99} + \sqrt {100} }}\)
\[ = 2\left( {\frac{1}{{\sqrt 1 + \sqrt 2 }} + \frac{1}{{\sqrt 2 + \sqrt 3 }} + \frac{1}{{\sqrt 3 + \sqrt 4 }} + ... + \frac{1}{{\sqrt {99} + \sqrt {100} }}} \right)\]
\[ = 2\left( {\frac{{\sqrt 1 - \sqrt 2 }}{{1 - 2}} + \frac{{\sqrt 2 - \sqrt 3 }}{{2 - 3}} + \frac{{\sqrt 3 - \sqrt 4 }}{{3 - 4}} + ... + \frac{{\sqrt {99} - \sqrt {100} }}{{99 - 100}}} \right)\]
\[ = 2\left( {\sqrt 2 - \sqrt 1 + \sqrt 3 - \sqrt 2 + \sqrt 4 - \sqrt 3 + ... + \sqrt {100} - \sqrt {99} } \right)\]
\[ = 2\left( {\sqrt {100} - \sqrt 1 } \right) = 2\left( {10 - 1} \right) = 18\].
Vậy \(\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 4 }} + ... + \frac{1}{{\sqrt {100} }} < 18\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:
\(C_8^2.C_5^2 = 280\) (cách).
• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:
\(C_8^2.C_3^2 = 84\) (cách).
• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:
\(C_8^2.C_5^1.C_3^1 = 420\) (cách).
Vậy có: 280 + 84 + 420 = 784 (cách).
Lời giải
Lời giải
Ta có sin x.sin 7x = sin 3x.sin 5x
\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)
Û cos 8x − cos 6x = cos 8x − cos 2x
Û cos 6x = cos 2x
\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.