Câu hỏi:

19/08/2025 7,213 Lưu

Cho nửa đường tròn tâm O đường kính AB và M là điểm nằm trên (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) lần lượt ở C và D. Đường thẳng AM cắt OC tại E, đường thẳng BM cắt OD tại F.

a) Chứng minh: \(\widehat {COD} = 90^\circ \).

b) Tứ giác MEOF là hình gì?

c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Dễ thấy \(\widehat {AMB} = 90^\circ \) hay \(\widehat {EMF} = 90^\circ \) tiếp tuyến CM, CA.

Suy ra OC ^ AM hay \(\widehat {OEM} = 90^\circ \).

Chứng minh tương tự ta được \(\widehat {OFM} = 90^\circ \).

Xét ∆CAO và ∆CMO có:

AO = MO = R (cmt)

CO là cạnh chung

\(\widehat {CAO} = \widehat {CMO} = 90^\circ \)

Do đó ∆CAO = ∆CMO (cạnh huyền cạnh góc vuông)

Suy ra \(\widehat {AOC} = \widehat {MOC}\) (hai góc tương ứng).

Do đó OC là tia phân giác của \(\widehat {AMO}\).

Tương tự AD là tia phân giác của \(\widehat {BOM}\)

Suy ra OC ^ OD hay \(\widehat {COD} = 90^\circ \).

b) Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao

\( \Leftrightarrow \widehat {OEM} = 90^\circ \)

Chứng minh tương tự, ta suy ra được \(\widehat {OFM} = 90^\circ \).

Vậy MEOF là hình chữ nhật.

c) Gọi I là trung điểm của CD.

Khi đó, I là tâm đường tròn đường kính CD và IO = IC = ID.

Ta có ABDC là hình thang vuông tại A và B nên IO // AC // BD và IO ^ AB.

Do đó AB là tiếp tuyến của đường tròn đường kính CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) ∆ABC vuông tại A

\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{4^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 8\;(cm)\)

\(\sin \widehat {ACB} = \frac{{AB}}{{BC}} = \frac{4}{8} = \frac{1}{2} \Rightarrow \widehat {ACB} = 30^\circ \)

\( \Rightarrow \widehat {ABC} = 180^\circ - \widehat {BAC} - \widehat {ACB} = 180^\circ - 90^\circ - 30^\circ = 60^\circ \)

b) Tứ giác ADHE có \(\widehat A = \widehat D = \widehat E = 90^\circ \) nên tứ giác ADHE là hình chữ nhật

Þ DE = AH và \(\widehat {DHE} = 90^\circ \)

Þ ∆DHE vuông tại H Þ DH2 + EH2 = DE2

Xét ∆ADH và ∆HDB có:

\(\widehat {ADH} = \widehat {HDB}\;\left( { = {{90}^ \circ }} \right)\)

\(\widehat {DAH} = \widehat {DHB}\) (cùng phụ \(\widehat {AHD}\))

Do đó ∆ADH ∆HDB (g.g)

\( \Rightarrow \frac{{EA}}{{EH}} = \frac{{EH}}{{CE}} \Rightarrow EA.EC = E{H^2}\)

Þ BD.DA + CE.EA = DH2 + EH2 = DE2 = AH2.

Vậy BD.DA + CE.EA = AH2 (đpcm).

c) Ta có \(\widehat {AIB} = \widehat {AHB} = 90^\circ \) nên I, H thuộc đường tròn đường kính AB

Þ Tứ giác ABHI nội tiếp đường tròn đường kính AB

\( \Rightarrow \widehat {BAH} = \widehat {BIH}\) (góc nội tiếp chắn cung BM)

\(\widehat {BAH} = \widehat {BCM}\) (cùng phụ \(\widehat {CAM}\))

Nên \(\widehat {BIH} = \widehat {BCM}\)

Xét ∆BIH và ∆BCM có:

\(\widehat B\) chung

\(\widehat {BIH} = \widehat {BCM}\) (cmt)

Do đó ∆BIH ∆BCM (g.g)

Suy ra \(\frac{{BH}}{{BM}} = \frac{{HI}}{{CM}}\) (các cạnh tương ứng tỉ lệ)

Xét ∆BAM và ∆BCA có:

\(\widehat B\) chung

\(\widehat {BMA} = \widehat {BAC}\;\left( { = {{90}^ \circ }} \right)\) (cmt)

Do đó ∆BAM ∆BCA (g.g)

\( \Rightarrow \frac{{BH}}{{BA}} = \frac{{AB}}{{BC}} \Rightarrow BH = \frac{{A{B^2}}}{{BC}} \Rightarrow \frac{{A{B^2}}}{{BC.BM}} = \frac{{HI}}{{CM}}\)

Khi đó \(\sin \widehat {AMB}\,\,.\,\,\sin \widehat {ACB} = \frac{{AB}}{{BM}}\,.\,\frac{{AB}}{{BC}} = \frac{{A{B^2}}}{{BM\,.\,BC}} = \frac{{HI}}{{CM}}\).

Vậy \[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\] (đpcm).

Lời giải

Lời giải

• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:

\(C_8^2.C_5^2 = 280\) (cách).

• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:

\(C_8^2.C_3^2 = 84\) (cách).

• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:

\(C_8^2.C_5^1.C_3^1 = 420\) (cách).

Vậy có: 280 + 84 + 420 = 784 (cách).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP