Câu hỏi:
31/03/2023 921
Cho tam giác ABC vuông tại A có AC = 2AB. Vẽ tia phân giác Ax của A. Từ B vẽ đường thẳng vuông góc với Ax cắt AC tại F. Từ C vẽ đường thẳng vuông góc Ax cắt Ax tại E.
a) CMR: Tứ giác ABEF có bốn cạnh bằng nhau.
b) CMR: Tứ giác BECF là hình bình hành.
c) Vẽ trung tuyến AM và đường cao AH. BF cắt AH và AM tại P và Q. Hỏi APEQ là hình gì?
Cho tam giác ABC vuông tại A có AC = 2AB. Vẽ tia phân giác Ax của A. Từ B vẽ đường thẳng vuông góc với Ax cắt AC tại F. Từ C vẽ đường thẳng vuông góc Ax cắt Ax tại E.
a) CMR: Tứ giác ABEF có bốn cạnh bằng nhau.
b) CMR: Tứ giác BECF là hình bình hành.
c) Vẽ trung tuyến AM và đường cao AH. BF cắt AH và AM tại P và Q. Hỏi APEQ là hình gì?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Lấy I là giao của Ax và BF.
a) AI là tia phân giác của góc BAF và AI cũng là đường cao của tam giác BAF nên
∆BAF cân tại A nên AB = AF.
Mà \(\widehat {BAF} = 90^\circ \).
Khi đó ABEF là hình vuông.
Vậy ABEF có bốn cạnh bằng nhau.
b) Ta có: BE = AF = BA.
Mà AC = 2BA nên AC = 2AF Þ FC = AF = BE.
Lại có BE // AF Þ BE // FC.
Vậy BECF là hình bình hành.
c) Vì tứ giác ABEF là hình vuông nên I là trung điểm AE.
Xét tam giác ABC vuông tại A có AM là trung tuyến
Suy ra AM = MB = MC (tính chất trung tuyến tam giác vuông)
Þ Tam giác AMC cân tại M
\( \Rightarrow \widehat {MAC} = \widehat {MCA}\)
Mà \(\widehat {MCA} = \widehat {BAH}\) (cùng phụ \(\widehat {ABC}\))
\( \Rightarrow \widehat {MAC} = \widehat {BAH}\)
• Xét ∆ABP và ∆AFQ có:
AB = AF
\(\widehat {BAP} = \widehat {FAQ}\)
\(\widehat {ABP} = \widehat {AFQ}\) (do ∆ABF cân tại A)
Do đó ∆ABP = ∆AFQ (g.c.g)
Suy ra AP = AQ (hai cạnh tương ứng).
Suy ra ∆APQ cân tại A, có AI là đường cao nên AI đồng thời là trung tuyến.
Do đó I là trung điểm PQ.
• Xét tứ giác APEQ có: I là trung điểm AE và PQ.
Suy ra tứ giác APEQ là hình bình hành.
Lại có AE vuông góc PQ.
Vậy tứ giác APEQ là hình thoi.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:
\(C_8^2.C_5^2 = 280\) (cách).
• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:
\(C_8^2.C_3^2 = 84\) (cách).
• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:
\(C_8^2.C_5^1.C_3^1 = 420\) (cách).
Vậy có: 280 + 84 + 420 = 784 (cách).
Lời giải
Lời giải
Ta có sin x.sin 7x = sin 3x.sin 5x
\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)
Û cos 8x − cos 6x = cos 8x − cos 2x
Û cos 6x = cos 2x
\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.