Câu hỏi:

31/03/2023 235 Lưu

Chứng minh: 2x − 2x2 − 1 < 0 với mọi số thực x.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: 2x − 2x2 – 1 = (2x2 − 2x + 1)

\( = - 2\left( {{x^2} - x + \frac{1}{4} + \frac{1}{4}} \right)\)\( = - 2{\left( {x - \frac{1}{2}} \right)^2} - \frac{1}{2}\)

Do \({\left( {x - \frac{1}{2}} \right)^2} \ge 0;\;\forall x\)

\( \Rightarrow - 2{\left( {x - \frac{1}{2}} \right)^2} \le 0;\;\forall x\)

\( \Rightarrow - 2{\left( {x - \frac{1}{2}} \right)^2} - \frac{1}{2} \le - \frac{1}{2};\;\forall x\)

\( \Rightarrow - 2{\left( {x - \frac{1}{2}} \right)^2} - \frac{1}{2} < 0;\;\forall x\)

Vậy 2x − 2x2 − 1 < 0 với mọi số thực x.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:

\(C_8^2.C_5^2 = 280\) (cách).

• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:

\(C_8^2.C_3^2 = 84\) (cách).

• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:

\(C_8^2.C_5^1.C_3^1 = 420\) (cách).

Vậy có: 280 + 84 + 420 = 784 (cách).

Lời giải

Lời giải

Ta có sin x.sin 7x = sin 3x.sin 5x

\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)

Û cos 8x − cos 6x = cos 8x − cos 2x

Û cos 6x = cos 2x

\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP