Câu hỏi:
12/07/2024 2,199Cho tam giác ABC có các đường phân giác cắt nhau tại N cho ha, hb, hc là đường cao gọi r là khoảng cách từ N đến cạnh tam giác. Chứng minh rằng:
\[\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{1}{r}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có \({S_{ABC}} = \frac{1}{2}{h_a}.a = \frac{1}{2}{h_b}.b = \frac{1}{2}{h_c}.c\).
Do đó \(\frac{a}{{2{S_{ABC}}}} + \frac{b}{{2{S_{ABC}}}} + \frac{c}{{2{S_{ABC}}}} = \frac{{a + b + c}}{2}.\frac{1}{{{S_{ABC}}}}\)\( = p.\frac{1}{{p.r}} = \frac{1}{r}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!