Câu hỏi:

31/03/2023 172

Giải phương trình: sin3 x + cos3 x − sin x − cos x = cos 2x.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có sin3 x + cos3 x − sin x − cos x = cos 2x

Û (sin x + cos x)(sin2 x − sin x.cos x + cos2 x) − (sin x + cos x) − (cos2 x − sin2 x) = 0

Û (sin x + cos x)(1 − sin x.cos x) − (sin x + cos x) − (sin x + cos x)(cos x − sin x) = 0

Û (sin x + cos x)(1 − sin x.cos x − 1 − cos x + sin x) = 0

Û (sin x + cos x)(− sin x.cos x − cos x + sin x) = 0

TH1: sin x + cos x = 0

\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\)

\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\).

TH2: − sin x.cos x − cos x + sin x = 0 (1)

Đặt t = sin x − cos x; t Î (−2; 2)

\( \Rightarrow \frac{{{t^2} - 1}}{2} = - \sin x.\cos x\)

Phương trình (1) Û \(t + \frac{{{t^2} - 1}}{2} = 0 \Leftrightarrow {t^2} + 2t - 1 = 0\)

\( \Rightarrow \left[ \begin{array}{l}t = - 1 + \sqrt 2 \;\left( {TM} \right)\\t = - 1 - \sqrt 2 \;\left( {KTM} \right)\end{array} \right.\)

\( \Rightarrow \sin x - \cos x = - 1 + \sqrt 2 \)

\( \Rightarrow \sqrt 2 \cos \left( {x + \frac{\pi }{4}} \right) = - \sqrt 2 + 1\)

\( \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \frac{{1 - \sqrt 2 }}{{\sqrt 2 }}\)

\( \Rightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + {\mathop{\rm arc}\nolimits} \,cos\frac{{1 - \sqrt 2 }}{{\sqrt 2 }} + k2\pi \\x = - \frac{\pi }{4} - {\mathop{\rm arc}\nolimits} \,cos\frac{{1 - \sqrt 2 }}{{\sqrt 2 }} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình: sin x.sin 7x = sin 3x.sin 5x.

Xem đáp án » 12/07/2024 17,687

Câu 2:

Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi trong đó có đúng 2 viên bi xanh?

Xem đáp án » 12/07/2024 14,376

Câu 3:

Cho tam giác ABC vuông tại A, đường cao AH.

a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.

b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng

minh BD.DA + CE.EA = AH2.

c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:

\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].

Xem đáp án » 12/07/2024 13,641

Câu 4:

Cho bốn điểm A, B, C, D. Chứng minh:

a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);

b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).

Xem đáp án » 12/07/2024 10,516

Câu 5:

Một cái thang dài 4 m đang dựa vào tường, chân thang cách chân tường 2 m. Tính góc tạo bởi thang với mặt đất và với mặt tường.

Xem đáp án » 12/07/2024 8,287

Câu 6:

Cho đường tròn tâm O đường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA (K và A nằm cùng phía đối với BC) tiếp tuyến đường trong tâm O tại C cắt ở I , OI cắt tại H.

a) Chứng minh tam giác ABC là tam giác vuông tại A.

b) Chứng minh IA là tiếp tuyến của đường tròn tâm O.

c) Cho BC = 30 cm; AB = 18 cm, tính các độ dài OI và CI.

Xem đáp án » 12/07/2024 7,749

Câu 7:

Cho tam giác ABC. Chứng minh nếu b + c = 2a thì \[\frac{2}{{{h_a}}} = \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}}\].

Xem đáp án » 12/07/2024 7,173

Bình luận


Bình luận