Câu hỏi:
31/03/2023 81Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
ĐK: x ≥ 0.
Ta có \(Q = \frac{{x + 16}}{{\sqrt x + 3}} = \frac{{x - {3^2} + 25}}{{\sqrt x + 3}} = \frac{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) + 25}}{{\sqrt x + 3}}\)
\[ = \sqrt x - 3 + \frac{{25}}{{\sqrt x + 3}} = \sqrt x + 3 + \frac{{25}}{{\sqrt x + 3}} - 6\].
Áp dụng BĐT AM-GM cho hai số dương, ta có:
\[Q = \sqrt x + 3 + \frac{{25}}{{\sqrt x + 3}} - 6 \ge 2\sqrt {\left( {\sqrt x + 3} \right).\frac{{25}}{{\sqrt x + 3}}} - 6\].
Do đó Q ≥ 2.5 − 6 = 4.
Dấu “=” xảy ra khi \(\sqrt x + 3 = \frac{{25}}{{\sqrt x + 3}} \Leftrightarrow \left( {\sqrt x + 3} \right) = 25\).
Vì \(\sqrt x + 3 > 0\) nên \(\sqrt x + 3 = 5 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!