Câu hỏi:
31/03/2023 181Cho hai biểu thức \(P = \frac{1}{{\sqrt x + 1}}\) và \(Q = \frac{{\sqrt x + 2}}{{x - 5\sqrt x + 6}} + \frac{{\sqrt x + 3}}{{\sqrt x - 2}} + \frac{{\sqrt x + 2}}{{3 - \sqrt x }}\) với x ≥ 0; x ≠ 4; x ≠ 9.
a) Tính giá trị của biểu thức P khi x = 25.
b) Rút gọn biểu thức Q.
c) Biết \(A = \frac{P}{Q}.\) Tìm số nguyên tố x để |A| > A.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
ĐK: x ≥ 0; x ≠ 4; x ≠ 9.
a) Khi x = 25 thì \(P = \frac{1}{{\sqrt {25} + 1}} = \frac{1}{{5 + 1}} = \frac{1}{6}\).
b) \(Q = \frac{{\sqrt x + 2}}{{x - 5\sqrt x + 6}} + \frac{{\sqrt x + 3}}{{\sqrt x - 2}} + \frac{{\sqrt x + 2}}{{3 - \sqrt x }}\)
\( = \frac{{\sqrt x + 2}}{{x - 3\sqrt x - 2\sqrt x + 6}} + \frac{{\sqrt x + 3}}{{\sqrt x - 2}} - \frac{{\sqrt x + 2}}{{\sqrt x - 3}}\)
\( = \frac{{\sqrt x + 2}}{{\sqrt x \left( {\sqrt x - 3} \right) - 2\left( {\sqrt x - 3} \right)}} + \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)
\( = \frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)
\[ = \frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} + \frac{{x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \frac{{x - 4}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\]
\( = \frac{{\sqrt x + 2 + x - 9 - x + 4}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \frac{{\sqrt x - 3}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \frac{1}{{\sqrt x - 2}}\).
Khi đó, \(A = \frac{P}{Q} = \frac{1}{{\sqrt x + 1}}:\frac{1}{{\sqrt x - 2}} = \frac{{\sqrt x - 2}}{{\sqrt x + 1}}\)
Để |A| > A Þ A < 0
\( \Rightarrow \frac{{\sqrt x - 2}}{{\sqrt x + 1}} < 0\)
Mà \(\sqrt x + 1 > 0 \Rightarrow \sqrt x - 2 < 0\)
\( \Rightarrow \sqrt x < 2 \Rightarrow x < 4\).
Kết hợp ĐK nên suy ra 0 £ x < 4. \[\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!