Trong dịp tổng kết cuối năm lớp 6A không có học sinh yếu, kém. Biết 125 % số học sinh khá là 35 em. Số học sinh giỏi bằng \(\frac{5}{7}\) số học sinh khá. Số học sinh trung bình bằng 10 % số học sinh giỏi.
a) Tính số học sinh mỗi loại.
b) Số học sinh giỏi bằng bao nhiêu phần trăm số học sinh cả lớp?
Trong dịp tổng kết cuối năm lớp 6A không có học sinh yếu, kém. Biết 125 % số học sinh khá là 35 em. Số học sinh giỏi bằng \(\frac{5}{7}\) số học sinh khá. Số học sinh trung bình bằng 10 % số học sinh giỏi.
a) Tính số học sinh mỗi loại.
b) Số học sinh giỏi bằng bao nhiêu phần trăm số học sinh cả lớp?
Quảng cáo
Trả lời:
Lời giải
a) Số học sinh khá là:
35 : 125% = 28 (hoc sinh)
Số học sinh giỏi là:
28 . \(\frac{5}{7}\) = 20 (học sinh)
Số học sinh trung bình là:
20 . 10% = 2 (học sinh)
b) Tỉ số phần trăm của số học sinh giỏi so với số học sinh cả lớp là:
\(\frac{{20}}{{28 + 20 + 2}}\,\,.\,\,100\% = 40\% \) (số học sinh cả lớp).
Vậy số học sinh giỏi bằng 40% số học sinh cả lớp.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
• TH1: Chọn 2 viên bi xanh, 2 viên bi đỏ có:
\(C_8^2.C_5^2 = 280\) (cách).
• TH2: Chọn 2 viên bi xanh, 2 viên bi vàng có:
\(C_8^2.C_3^2 = 84\) (cách).
• TH3: Chọn 2 viên bi xanh, 1 viên bi đỏ và 1 viên bi vàng có:
\(C_8^2.C_5^1.C_3^1 = 420\) (cách).
Vậy có: 280 + 84 + 420 = 784 (cách).
Lời giải
Lời giải
Ta có sin x.sin 7x = sin 3x.sin 5x
\( \Leftrightarrow - \frac{1}{2}\left[ {\cos \left( {x + 7x} \right) - \cos \left( {7x - x} \right)} \right] = - \frac{1}{2}\left[ {\cos \left( {5x + 3x} \right) - \cos \left( {5x - 3x} \right)} \right]\)
Û cos 8x − cos 6x = cos 8x − cos 2x
Û cos 6x = cos 2x
\( \Leftrightarrow \left[ \begin{array}{l}6x = 2x + k2\pi \\6x = - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4x = k2\pi \\8x = k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{\pi }{2}\\x = k\frac{\pi }{4}\end{array} \right. \Rightarrow x = k\frac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.