Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đồ thị hàm số y = 3x.

Với x = 1 thì y = 3 . 1 = 3, ta được điểm A(1; 3) thuộc đồ thị của hàm số y = 3x.

Vậy đồ thị của hàm số y = 3x là đường thẳng đi qua hai điểm O(0; 0) và A(1; 3).

Khi đó, đồ thị hàm số y = 3x được biểu diễn như hình vẽ:

Vẽ đồ thị của mỗi hàm số sau: a) y = 3x; (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề bài, đường thẳng y = ax + b (a ≠ 0) có hệ số góc bằng – 1 nên đường thẳng có dạng y = – x + b.

Mặt khác, đường thẳng đi qua điểm M(1; 2) nên ta có:

– 1 + b = 2 suy ra b = 3.

Do đó, đường thẳng cần tìm là y = – x + 3.

• Với x = 0 thì y = – 0 + 3 = 0 + 3 = 3, ta được điểm A(0; 3) thuộc đồ thị của hàm số y = – x + 3.

• Với y = 0 thì – x + 3 = 0 suy ra x = 3, ta được điểm B(3; 0) thuộc đồ thị của hàm số y = – x + 3.

Do đó, đồ thị của hàm số y = – x + 3 là đường thẳng đi qua hai điểm A(0; 3) và B(3; 0).

Ta vẽ đồ thị hàm số như sau:

Xác định đường thẳng y = ax + b (a ≠ 0) có hệ số góc bằng – 1 và đi qua điểm M(1; 2). Sau đó vẽ đường thẳng tìm được trên mặt phẳng tọa độ. (ảnh 1)

Lời giải

b) Đường thẳng y = ax + b (a ≠ 0) song song với đường thẳng y = 2x – 1 nên đường thẳng có dạng y = 2x + b.

Mặt khác, đường thẳng y = 2x + b đi qua điểm M(1; 3) nên 2 . 1 + b = 3 suy ra b = 1.

Do đó, đường thẳng cần tìm là y = 2x + 1.

• Với x = 0 thì y = 2 . 0 + 1 = 0 + 1 = 1, ta được điểm C(0; 1) thuộc đồ thị của hàm số y = 2x + 1.

• Với y = 0 thì 2x + 1 = 0 suy ra x=12, ta được điểm D12;  0 thuộc đồ thị của hàm số y = 2x + 1.

Do đó, đồ thị của hàm số y = 2x + 1 là đường thẳng đi qua hai điểm C(0; 1) và D12;  0.

Ta vẽ đồ thị hàm số y = 2x + 1 như sau:

b) Xác định đường thẳng y = ax + b (a ≠ 0) đi qua điểm M(1; 3) và song song với đường thẳng y = 2x – 1. Sau đó vẽ đường thẳng tìm được trên mặt phẳng tọa độ. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP