Câu hỏi:

11/07/2024 9,309

Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai về đường thẳng d là đồ thị của hàm số y = ax + b (a ≠ 0)?

a) Đường thẳng d cắt trục tung tại điểm có tung độ bằng -ba.

b) Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng b.

c) Đường thẳng d cắt trục tung tại điểm có tung độ bằng b.

d) Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng -ba.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Đường thẳng d cắt trục tung, tức là y = 0 nên ta có ax + b = 0.

Suy ra ax = – b hay x=ba.

Khi đó, đường thẳng d cắt trục tung tại điểm có tung độ bằng ba.

Do đó, phát biểu a) đúng, phát biểu c) sai.

• Đường thẳng d cắt trục hoành, tức là x = 0 nên ta có y = a . 0 + b = 0 + b = b.

Khi đó, đường thẳng d cắt trục hoành tại điểm có hoành độ bằng b.

Do đó, phát biểu b) đúng, phát biểu d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề bài, đường thẳng y = ax + b (a ≠ 0) có hệ số góc bằng – 1 nên đường thẳng có dạng y = – x + b.

Mặt khác, đường thẳng đi qua điểm M(1; 2) nên ta có:

– 1 + b = 2 suy ra b = 3.

Do đó, đường thẳng cần tìm là y = – x + 3.

• Với x = 0 thì y = – 0 + 3 = 0 + 3 = 3, ta được điểm A(0; 3) thuộc đồ thị của hàm số y = – x + 3.

• Với y = 0 thì – x + 3 = 0 suy ra x = 3, ta được điểm B(3; 0) thuộc đồ thị của hàm số y = – x + 3.

Do đó, đồ thị của hàm số y = – x + 3 là đường thẳng đi qua hai điểm A(0; 3) và B(3; 0).

Ta vẽ đồ thị hàm số như sau:

Xác định đường thẳng y = ax + b (a ≠ 0) có hệ số góc bằng – 1 và đi qua điểm M(1; 2). Sau đó vẽ đường thẳng tìm được trên mặt phẳng tọa độ. (ảnh 1)

Lời giải

a) Đồ thị hàm số y = 3x.

Với x = 1 thì y = 3 . 1 = 3, ta được điểm A(1; 3) thuộc đồ thị của hàm số y = 3x.

Vậy đồ thị của hàm số y = 3x là đường thẳng đi qua hai điểm O(0; 0) và A(1; 3).

Khi đó, đồ thị hàm số y = 3x được biểu diễn như hình vẽ:

Vẽ đồ thị của mỗi hàm số sau: a) y = 3x; (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP