Câu hỏi:

08/04/2023 3,810

Cho hàm số y = f(x) có đạo hàm f'x=xx+1x2+2x+m trên R. Hỏi có bao nhiêu giá trị nguyên thuộc [-10;10] của m để hàm số y = f(x) có 4 điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Hàm số y = f(x) có 4 điểm cực trị khi và chỉ khi phương trình f'(x) = 0 có 4 nghiệm phân biệt. Nói cách khác, phương trình x2+2x+m=0 có 2 nghiệm phân biệt khác 0 và -1.

Δ'=1m>002+2.0+m012+21+m0m<1m0m1m<1m0.

Có giá trị nguyên của m thuộc [-10;10] thỏa yêu cầu bài toán là 10;9;8;...;1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Phương trình hoành độ giao điểm

x33x+2=24xx3+x=0x=0y=2M0;2.

Suy ra a + b = 2

Câu 2

Lời giải

Chọn D

Phương trình mặt cầu (S) có tâm I(-1;0;2) và bán kính R = 3 là x+12+y2+z22=9

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP