Câu hỏi:

13/07/2024 4,396

Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC. Chứng minh PC cắt AH tại trung điểm I của AH.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC.  (ảnh 1)

Gọi D là giao điểm của đường thẳng AC và BP

I là giao điểm của PC và AH.

Ta có BAC^=90°  (BC là đường kính)

 BAD^=90° (kề bù) hay DAP^+PAB^=90°  (1)

∆ABD vuông tại A (cmt) ABD^+ADB^=90°  (2)

Mặt khác PA, PB là hai tiếp tuyến của (O) nên PA = PB và PAB^=PBA^   (3)

Từ (1), (2), (3) DAP^=ADP^ .

Do đó ∆APD cân tại P

Þ PA = PD, mà PA = PB (tính chất hai tiếp tuyến cắt nhau)

Þ PD = PB

Lại có DB // AH (^ BC).

Xét PBC có: IH // PB IHPB=ICPC  (4) (định lí Ta-lét).

Tương tự PCD có: AI // PD AIDP=ICPC  (5)

Từ (4), (5)  IHPB=AIDPIH=IA(vì PB = PD).

Vậy PC cắt AH tại trung điểm I của AH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 < 2 < x2.

Xem đáp án » 13/07/2024 20,239

Câu 2:

Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật biết rằng SA vuông góc (ABCD), SC hợp với đáy một góc 45° và AB = 3a, BC =4a. Tính thể tích khối chóp.

Xem đáp án » 13/07/2024 7,002

Câu 3:

Trong mặt phẳng Oxy, cho A(2; 4), B(−1; 4), C(−5; 1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

Xem đáp án » 13/07/2024 4,411

Câu 4:

Cho hình lục giác đều ABCDEF tâm O. Chứng minh:

OA+OB+OC+OD+OE+OF=0.

Xem đáp án » 13/07/2024 4,362

Câu 5:

b) Vẽ đồ thị hàm số tìm được ở câu a . Tính diện tích tam giác tạo bởi đồ thị hàm số với hai trục tọa độ.

Xem đáp án » 13/07/2024 3,730

Câu 6:

Cho hình chóp S.ABCD. Gọi M, N, P lần lượt nằm trên các cạnh SA, SB, SC. Tìm giao điểm của (MNP) và SD.

Xem đáp án » 13/07/2024 3,373

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store