Câu hỏi:
19/04/2023 200Trên các cạnh AB, BC, CA của ∆ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n, biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Nhận xét: Mỗi tam giác được lập thành do một cách chọn 3 điểm sao cho 3 điểm đó không thẳng hàng tức là không cùng nằm trên một cạnh của ∆ABC.
Chọn ngẫu nhiên 3 điểm từ n + 6 điểm đã cho có: \(C_{n + 6}^3\) cách.
Chọn 3 điểm chỉ nằm trên đúng 1 cạnh của ∆ABC có: \(C_4^3 + C_n^3\) (cách).
Số tam giác lập thành là: \(C_{n + 6}^3 - \left( {C_4^3 + C_n^3} \right) = 247\)
\( \Leftrightarrow \frac{{\left( {n + 6} \right)!}}{{3!.\left( {n + 3} \right)!}} - \left( {4 + \frac{{n!}}{{3!.\left( {n - 3} \right)!}}} \right) = 247\)\( \Leftrightarrow \frac{{\left( {n + 6} \right)\left( {n + 5} \right)\left( {n + 4} \right)}}{6} - \left( {4 + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6}} \right) = 247\)
\( \Leftrightarrow \left( {n + 6} \right)\left( {n + 5} \right)\left( {n + 4} \right) - n\left( {n - 1} \right)\left( {n - 2} \right) = 1506\)
\( \Leftrightarrow 18{n^2} + 72n - 1386 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = - 11\left( L \right)}\\{n = 7\left( {TM} \right)}\end{array}} \right.\)
Vậy n = 7.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).
Câu 2:
Tính tổng: \({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \).
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh A, \(\widehat {BAD} = 120^\circ \). Hai mặt phẳng (SAB) và (SCD) cùng vuông góc với mặt đáy, (SC;(ABCD)) = 45°. Gọi G là trọng tâm ∆ABC, tính khoảng cách h từ G đến (SCD) theo a.
Câu 5:
Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để 2 bạn A và B không ngồi cạnh nhau.
Câu 6:
Giá trị của
\(M = {\cos ^2}15 + {\cos ^2}25 + {\cos ^2}35 + {\cos ^2}45 + {\cos ^2}105 + {\cos ^2}115 + {\cos ^2}125\)là ?
Câu 7:
Cho hình thang ABCD (AB // CD) có AD = CD và AC ⊥ BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.
a. Chứng minh tứ giác AECD là hình thoi.
b. Chứng minh tứ giác BEDC là hình bình hành.
c. Chứng minh ∆CEB cân.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận