Câu hỏi:
12/07/2024 1,912Cho nửa đường trong (O) đường kính BC và điểm A nằm trong nửa đường tròn (A ≠ B, C). Kẻ AH ⊥ BC (H ∈ BC). Trên nửa mặt phẳng bờ BC chứa A vẽ 2 nửa đường tròn, đường kính HB và HC. Chúng cắt AB và AC ở E và F.
a. Chứng minh: AE.AB = AF.AC.
b. Chứng minh: EF là tiếp tuyến của đường tròn đường kính BH.
c. Gọi I và K là 2 điểm của H qua AB và AC. Chứng minh I, A, K thẳng hàng.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a. Ta có: \(\widehat {BEH} = 90^\circ \)(góc nội tiếp chắn nửa (BH)) ⇒ HE ⊥ AB
∆AHB vông tại H, đường cao HE:
AE.AB = \(A{H^2}(1)\)
\(\widehat {HFC} = 90^\circ \)(góc nội tiếp chắn nửa (HC)) ⇒ HF ⊥ AC
∆AHC vuông tại H, đường cao HF: AF.AC = \(A{H^2}\)(2)
Từ (1) và (2) ⇒ AE.AB = AF.AC
b. Ta có: \(\widehat {BAC} = 90^\circ \)(góc nội tiếp chắn nửa (BC)) \( \Rightarrow \widehat {EAF} = 90^\circ \)
Mà \(\widehat {AEH} = 90^\circ \left( {HE \bot AB} \right)\) và \[\widehat {AFH} = 90^\circ \left( {HF \bot AC} \right)\]
⇒ Tứ giác AEHF là hình chữ nhật ⇒ Tứ giác AEHF nội tiếp
\(\widehat {HEF} = \widehat {HAF}\)(Cùng chắn cung HF của (AEHF))
\(\widehat {HAF} = \widehat {ABC} \Rightarrow \) EF là tiếp tuyến (BH)
c. Ta sẽ chứng minh \(\widehat {AIH} = \widehat {KAC}\)
Ta có: \(\widehat {KAC} = \widehat {HAC}\) (tính chất đối xứng)
\(\widehat {HAC} = \widehat {AHE}\) (so le trong) \( \Rightarrow \widehat {KAC} = \widehat {AHE}\)
\(\widehat {AIH} = \widehat {AHE}\) (tính chất đối xứng)
Vậy \(\widehat {AIH} = \widehat {KAC}\) (Cùng = \(\widehat {AHE}\))
Mà AC // IH (tứ giác AEHF là hình chữ nhật)
\( \Rightarrow \widehat {AIH}\) và \(\widehat {KAC}\) đồng vị ⇒ I, A, K thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).
Câu 2:
Tính tổng: \({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \).
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh A, \(\widehat {BAD} = 120^\circ \). Hai mặt phẳng (SAB) và (SCD) cùng vuông góc với mặt đáy, (SC;(ABCD)) = 45°. Gọi G là trọng tâm ∆ABC, tính khoảng cách h từ G đến (SCD) theo a.
Câu 5:
Giá trị của
\(M = {\cos ^2}15 + {\cos ^2}25 + {\cos ^2}35 + {\cos ^2}45 + {\cos ^2}105 + {\cos ^2}115 + {\cos ^2}125\)là ?
Câu 6:
Cho hình thang ABCD (AB // CD) có AD = CD và AC ⊥ BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.
a. Chứng minh tứ giác AECD là hình thoi.
b. Chứng minh tứ giác BEDC là hình bình hành.
c. Chứng minh ∆CEB cân.
Câu 7:
Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để 2 bạn A và B không ngồi cạnh nhau.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận