Câu hỏi:
25/04/2023 1,265Cho tam giác ABC vuông tại đỉnh A, đường cao AH, từ H kẻ HM vuông góc AC và trên HM lấy điểm E sao cho MH = EM. Kẻ HN vuông góc AB và trên HN lấy điểm D sao cho NH = DN.
a) Chứng minh D, A, E thẳng hàng.
b) Chứng minh MN song song DE.
c) Chứng minh BD song song CE.
d) Chứng minh AD = AE = AH, suy ra tam giác DHE vuông.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Xét tam giác AHE có AM vừa là đường cao vừa là trung tuyến
Do đó tam giác AHE cân tại A
Suy ra AH = AE, AH là tia phân giác của \(\widehat {HA{\rm{E}}}\)
Suy ra \(\widehat {HAM} = \widehat {MAE} = \frac{1}{2}\widehat {HA{\rm{E}}}\)
Xét tam giác AHD có AN vừa là đường cao vừa là trung tuyến
Do đó tam giác AHD cân tại A
Suy ra AH = AD, AN là tia phân giác của \(\widehat {HA{\rm{D}}}\)
Suy ra \(\widehat {HAN} = \widehat {NAD} = \frac{1}{2}\widehat {HAD}\)
Ta có:
\(\widehat {DA{\rm{E}}} = \widehat {DAN} + \widehat {NAH} + \widehat {HAM} + \widehat {MA{\rm{E}}} = 2\widehat {NAH} + 2\widehat {HAM} = 2\widehat {BAC} = 2.90^\circ = 180^\circ \)
Suy ra D, A, E thẳng hàng
b) Xét tam giác EDH có M là trung điểm của EH, N là trung điểm của DH
Suy ra MN là đường trung bình
Do đó MN // DE
c) Xét △AHB và △ADB có
AB là cạnh chung
\(\widehat {HAB} = \widehat {BAD}\)(chứng minh câu a)
AH = AD (chứng minh câu a)
Do đó △AHB = △ADB (c.g.c)
Suy ra \(\widehat {AHB} = \widehat {ADB}\) (hai góc tương ứng)
Mà \(\widehat {AHB} = 90^\circ \) nên \(\widehat {ADB} = 90^\circ \)
Hay AD ⊥ BD (1)
Xét △AHC và △AEC có
AC là cạnh chung
\(\widehat {HAC} = \widehat {EAC}\)(chứng minh câu a)
AH = AE (chứng minh câu a)
Do đó △AHC = △AEC (c.g.c)
Suy ra \(\widehat {AHC} = \widehat {AEC}\) (hai góc tương ứng)
Mà \(\widehat {AHC} = 90^\circ \) nên \(\widehat {AEC} = 90^\circ \)
Hay AE ⊥ EC (2)
Từ (1) và (2) suy ra EC // BD
d) Ta có AD = AH, AE = AH (chứng minh câu a)
Suy ra AD = AE = AH
Xét tứ giác AMHN có
\(\widehat {ANH} = \widehat {AMH} = \widehat {MAN} = 90^\circ \)
Suy ra AMHN là hình chữ nhật
Do đó \(\widehat {MHN} = 90^\circ \)
Hay tam giác DEH vuông tại H
Vậy AD = AE = AH và DHE vuông tại H.
Đã bán 386
Đã bán 189
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây:
a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} \);
b) \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} \);
c) \(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} \);
d) \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} \).
Câu 2:
Cho biết log25 7 = a và log2 5 = b. Tính \({\log _{\sqrt[3]{5}}}\frac{{49}}{8}\) theo a, b.
Câu 3:
Hai kho gạo có 155 tấn gạo. Nếu thêm vào kho thứ nhất 8 tấn và thêm vào kho thứ hai 17 tấn thì số gạo ở mỗi kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn gạo?
Câu 4:
Cho tam giác ABC. Chứng minh rằng:
a) \(\cot {\rm{A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\).
b) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
Câu 5:
Câu 6:
Nhà máy A sản xuất một loại áo giá vốn là 500 000 000 đồng và giá bán mỗi chiếc sẽ là 400 000 đồng khi đó gọi y (đồng) là số tiền lời (hoặc lỗ) của nhà máy thu được khi bán x cái áo.
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận