Câu hỏi:
13/07/2024 266Hai tam giác vuông ABC (vuông tại đỉnh A) và A’B’C’ (vuông tại đỉnh A’) có tương ứng một cạnh góc vuông và một góc nhọn kề với cạnh ấy bằng nhau: AB = A’B’, \(\widehat B = \widehat {B'}\) (Hình 4.46). Dựa vào trường hợp bằng nhau góc – cạnh – góc của hai tam giác, hãy giải thích vì sao hai tam giác vuông ABC và A’B’C’ bằng nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tam giác ABC vuông tại A (theo giả thiết) nên \(\widehat {\rm{A}} = 90^\circ \)
Tam giác A'B'C' vuông tại A' (theo giả thiết) nên \(\widehat {{\rm{A'}}} = 90^\circ \)
Do đó \(\widehat {\rm{A}} = \widehat {{\rm{A'}}} = 90^\circ \)
Xét tam giác ABC và tam giác A'B'C' có:
\(\widehat {\rm{A}} = \widehat {{\rm{A'}}}\) (chứng minh trên);
AB = A'B' (theo giả thiết);
\(\widehat B = \widehat {B'}\) (theo giả thiết).
Vậy DABC = DA’B’C’ (g.c.g).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Chứng minh rằng:
a) \(\cot {\rm{A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\).
b) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
Câu 2:
Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây:
a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} \);
b) \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} \);
c) \(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} \);
d) \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} \).
Câu 3:
Hai kho gạo có 155 tấn gạo. Nếu thêm vào kho thứ nhất 8 tấn và thêm vào kho thứ hai 17 tấn thì số gạo ở mỗi kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn gạo?
Câu 4:
Câu 5:
Câu 6:
Cho biết log25 7 = a và log2 5 = b. Tính \({\log _{\sqrt[3]{5}}}\frac{{49}}{8}\) theo a, b.
về câu hỏi!