Câu hỏi:

13/07/2024 508 Lưu

Một hình chữ nhật có nửa chu vi là 26 cm, chiều rộng kém chiều dài 8cm. Tính diện tích của hình chữ nhật đó?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có sơ đồ:

Một hình chữ nhật có nửa chu vi là 26 cm, chiều rộng kém chiều dài 8cm (ảnh 1)

Theo sơ đồ, hai lần chiều dài hình chữ nhật là:

26 + 8 = 34 (cm)

Chiều dài hình chữ nhật là:

34 : 2 = 17 (cm)

Chiều rộng hình chữ nhật là:

17 – 8 = 9 (cm)

Diện tích hình chữ nhật là:

17 × 9 = 153 (cm2)

Vậy diện tích hình chữ nhật là 153 cm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số gạo kho thứ nhất nhiều hơn số gạo kho thứ hai là:

                17 – 8 = 9 (tấn)

Số gạo lúc đầu của kho thứ nhất là:

                (155 + 9) : 2 = 82 (tấn)

Số gạo lúc đầu của kho thứ hai là

               155 – 82 = 73 (tấn)

Vậy lúc đầu kho thứ nhất có 82 tấn gạo, kho thứ hai có 73 tấn gạo.

Lời giải

Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây: a) vecto OA (ảnh 1)

a) Vì ABCD là hình bình hành tâm O

Nên O là giao điểm của AC và BD, AB = CD, AD = BC

Suy ra O là trung điểm của AC và BD

Do đó OA = OC, OB = OD

Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)

c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)

Ta có

\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)

= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)

d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP