Câu hỏi:
13/07/2024 1,574Không tính cụ thể các giá trị của A và B, hãy cho biết số nào lớn hơn và lớn hơn bao nhiêu?
a, A = 1998 . 1998 ; B = 1996 . 2000.
b, A = 2000 . 2000 ; B = 1990 . 2010.
c, A = 25 . 33 – 10 ; B = 31 . 26 + 10.
d, A = 32 . 53 – 31 ; B = 53 . 31 + 32.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a, Ta có:
A = 1998 . 1998 = (1996 + 2) . 1998 = 1996 . 1998 + 2 . 1998
B = 1996 . 2000 = 1996 . (2 + 1998) = 1996 . 2 + 1996 . 1998
Vì 2 . 1998 > 1996 . 2 nên 2 . 1998 + 1996 . 1998 > 1996 . 2 + 1996 . 1998
Vậy A > B.
b, Ta có:
A = 2000 . 2000
B = 1990 . 2010 = (2000 – 10) . (2000 + 10) = 2000 . 2000 – 10 . 10
Suy ra A > B.
c, Ta có:
A = 25 . 33 – 10 = (26 – 1) . 33 – 10 = 26 . 33 – 33 – 10 = 26 . 33 – 43
B = 31 . 26 + 10 = (33 – 2) . 26 + 10 = 33 . 26 – 2 . 26 + 10 = 26 . 33 – 42
Vì 42 < 43 nên 26 . 33 – 42 > 26 . 33 – 43 hay B > A.
Nên A < B
d, Ta có:
A = 32 . 53 – 31
A = 31 . 53 + 53 – 31
A = 31 . 53 + (53 – 31)
A = 31 . 53 + 22
Vì 22 < 32 nên 31 . 53 + 22 < 53 . 31 + 32 hay A < B.
Vậy A < B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Chứng minh rằng:
a) \(\cot {\rm{A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\).
b) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
Câu 2:
Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây:
a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} \);
b) \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} \);
c) \(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} \);
d) \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} \).
Câu 3:
Hai kho gạo có 155 tấn gạo. Nếu thêm vào kho thứ nhất 8 tấn và thêm vào kho thứ hai 17 tấn thì số gạo ở mỗi kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn gạo?
Câu 4:
Câu 5:
Câu 6:
Cho biết log25 7 = a và log2 5 = b. Tính \({\log _{\sqrt[3]{5}}}\frac{{49}}{8}\) theo a, b.
về câu hỏi!