Câu hỏi:
13/07/2024 1,127Cho tam giác ABC. Chứng minh rằng:
a) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Áp dụng định lí côsin ta có: cos A = \(\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
Ta có \(S = \frac{1}{2}bc\sin A\), suy ra \(\sin A = \frac{{2{\rm{S}}}}{{bc}}\)
Do đó cot A = \(\frac{{co{\rm{sA}}}}{{\sin {\rm{A}}}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{{2{\rm{S}}}}{{bc}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}.\frac{{bc}}{{2{\rm{S}}}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\)
Chứng minh tương tự ta có:
\(\cot B = \frac{{{a^2} + {c^2} - {b^2}}}{{4{\rm{S}}}}\); \(\cot C = \frac{{{a^2} + {b^2} - {c^2}}}{{4{\rm{S}}}}\)
Do đó:
\(\cot {\rm{A + cot B + cot C = }}\frac{{{c^2} + {b^2} - {a^2}}}{{4{\rm{S}}}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4{\rm{S}}}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4{\rm{S}}}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\)
Vậy \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
b) Áp dụng công thức độ dài đường trung tuyến ta có:
\(m_a^2 = \frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}\), \(m_b^2 = \frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}\) và \(m_c^2 = \frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}\)
Suy ra:
Vậy \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Chứng minh rằng:
a) \(\cot {\rm{A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\).
b) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
Câu 2:
Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây:
a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} \);
b) \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} \);
c) \(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} \);
d) \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} \).
Câu 3:
Hai kho gạo có 155 tấn gạo. Nếu thêm vào kho thứ nhất 8 tấn và thêm vào kho thứ hai 17 tấn thì số gạo ở mỗi kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn gạo?
Câu 4:
Câu 5:
Câu 6:
Cho biết log25 7 = a và log2 5 = b. Tính \({\log _{\sqrt[3]{5}}}\frac{{49}}{8}\) theo a, b.
về câu hỏi!