Câu hỏi:

25/04/2023 108

Cho 3 hàm số có đồ thị (d1), (d2), (d3) với:

(d1) : y = 2x + m – 3;

(d2) : y = (m + 1)x – 3;

(d3) : y = 4x – 1.

Tìm m để:

a) (d1) đi qua gốc tọa độ.

b) (d1), (d2), (d3) đồng quy.

c) (d1) đi qua giao điểm của (d3) và trục hoành.

d) (d2) đi qua giao điểm của (d3) và trục tung.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Để (d) đi qua gốc tọa độ thì (d) đi qua điểm O(0; 0)

Suy ra m – 3 = 0

Hay m = 3

b) Phương trình hoành độ giao điểm M của (d1) và (d3) là:

(2x + m – 3) – (4x – 1) = 0

2x + m – 3 – 4x + 1 = 0

– 2x + m – 2 = 0

x = \(\frac{{m - 2}}{2}\)

Suy ra y = 4. \(\frac{{m - 2}}{2}\) 1 = 2(m – 2) – 1 = 2m – 5

Do đó \(M\left( {\frac{{m - 2}}{2};2m - 5} \right)\)

Để (d1), (d2), (d3) đồng quy thì M thuộc (d2)

Hay 2m – 5 = (m + 1). \(\frac{{m - 2}}{2}\) – 3

\( \Leftrightarrow 2m - 5 = \frac{{{m^2} - m - 2}}{2} - 3\)

\( \Leftrightarrow 2m - 5 = \frac{{{m^2} - m - 8}}{2}\)

4m – 10 = m2 – m – 8

m2 – 5m + 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = \frac{{5 + \sqrt {17} }}{2}\\m = \frac{{5 - \sqrt {17} }}{2}\end{array} \right.\)

c) Hoành độ giao điểm của (d3) và trục hoành là

4x – 1 = 0 \( \Leftrightarrow x = \frac{1}{4}\)

Nên giao điểm của (d3) và trục hoành là \(A\left( {\frac{1}{4};0} \right)\).

Để (d1) đi qua giao điểm của (d3) và trục hoành thì A thuộc (d1)

Suy ra 0 = 2. \(\frac{1}{4}\)  + m – 3

m – \(\frac{5}{2}\) = 0

m = \(\frac{5}{2}\)

d) Tung độ giao điểm của (d3) và trục tung là

y = 4x – 1 = 4 . 0 – 1 = – 1

Nên giao điểm của (d3) và trục tung là B(0; – 1)

Để (d2) đi qua giao điểm của (d3) và trục tung thì B thuộc (d2)

Suy ra – 1 = (m + 1) . 0 – 3

– 1 = – 3 (vô lý)

Vậy không có giá trị m thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Chứng minh rằng:

a) \(\cot {\rm{A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\).

b) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).

Xem đáp án » 13/07/2024 4,889

Câu 2:

Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây:

a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} \);

b) \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} \);

c) \(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} \);

d) \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} \).

Xem đáp án » 13/07/2024 3,840

Câu 3:

Hai kho gạo có 155 tấn gạo. Nếu thêm vào kho thứ nhất 8 tấn và thêm vào kho thứ hai 17 tấn thì số gạo ở mỗi kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn gạo?

Xem đáp án » 13/07/2024 3,049

Câu 4:

Cho hình lăng trụ ABC.A’B’C biết A’.ABC là tứ diện đều cạnh bằng a. Tính thể tích khối A’BCC’B’.

Xem đáp án » 25/04/2023 2,115

Câu 5:

Cho tam giác ABC, biết a = 7, b = 8, c = 5. Tính \(\widehat A\), S, ha , R.

Xem đáp án » 13/07/2024 2,083

Câu 6:

Cho biết log25 7 = a và log2 5 = b. Tính \({\log _{\sqrt[3]{5}}}\frac{{49}}{8}\) theo a, b.

Xem đáp án » 25/04/2023 2,043

Câu 7:

Chu kì của hàm số y = 3 + 2sin2 2x là

Xem đáp án » 25/04/2023 1,943

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store