Câu hỏi:

25/04/2023 185

Cho 3 hàm số có đồ thị (d1), (d2), (d3) với:

(d1) : y = 2x + m – 3;

(d2) : y = (m + 1)x – 3;

(d3) : y = 4x – 1.

Tìm m để:

a) (d1) đi qua gốc tọa độ.

b) (d1), (d2), (d3) đồng quy.

c) (d1) đi qua giao điểm của (d3) và trục hoành.

d) (d2) đi qua giao điểm của (d3) và trục tung.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Để (d) đi qua gốc tọa độ thì (d) đi qua điểm O(0; 0)

Suy ra m – 3 = 0

Hay m = 3

b) Phương trình hoành độ giao điểm M của (d1) và (d3) là:

(2x + m – 3) – (4x – 1) = 0

2x + m – 3 – 4x + 1 = 0

– 2x + m – 2 = 0

x = \(\frac{{m - 2}}{2}\)

Suy ra y = 4. \(\frac{{m - 2}}{2}\) 1 = 2(m – 2) – 1 = 2m – 5

Do đó \(M\left( {\frac{{m - 2}}{2};2m - 5} \right)\)

Để (d1), (d2), (d3) đồng quy thì M thuộc (d2)

Hay 2m – 5 = (m + 1). \(\frac{{m - 2}}{2}\) – 3

\( \Leftrightarrow 2m - 5 = \frac{{{m^2} - m - 2}}{2} - 3\)

\( \Leftrightarrow 2m - 5 = \frac{{{m^2} - m - 8}}{2}\)

4m – 10 = m2 – m – 8

m2 – 5m + 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = \frac{{5 + \sqrt {17} }}{2}\\m = \frac{{5 - \sqrt {17} }}{2}\end{array} \right.\)

c) Hoành độ giao điểm của (d3) và trục hoành là

4x – 1 = 0 \( \Leftrightarrow x = \frac{1}{4}\)

Nên giao điểm của (d3) và trục hoành là \(A\left( {\frac{1}{4};0} \right)\).

Để (d1) đi qua giao điểm của (d3) và trục hoành thì A thuộc (d1)

Suy ra 0 = 2. \(\frac{1}{4}\)  + m – 3

m – \(\frac{5}{2}\) = 0

m = \(\frac{5}{2}\)

d) Tung độ giao điểm của (d3) và trục tung là

y = 4x – 1 = 4 . 0 – 1 = – 1

Nên giao điểm của (d3) và trục tung là B(0; – 1)

Để (d2) đi qua giao điểm của (d3) và trục tung thì B thuộc (d2)

Suy ra – 1 = (m + 1) . 0 – 3

– 1 = – 3 (vô lý)

Vậy không có giá trị m thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây: a) vecto OA (ảnh 1)

a) Vì ABCD là hình bình hành tâm O

Nên O là giao điểm của AC và BD, AB = CD, AD = BC

Suy ra O là trung điểm của AC và BD

Do đó OA = OC, OB = OD

Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)

c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)

Ta có

\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)

= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)

d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

Câu 2

Lời giải

Đáp án đúng là: D

Ta có:

Cho biết log25 7 = a và log2 5 = b. Tính log căn bậc ba 5 = 49/8 theo a, b (ảnh 1)

Do đó :

Cho biết log25 7 = a và log2 5 = b. Tính log căn bậc ba 5 = 49/8 theo a, b (ảnh 2)

Vậy ta chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP