Câu hỏi:

25/04/2023 178

Cho 3 hàm số có đồ thị (d1), (d2), (d3) với:

(d1) : y = 2x + m – 3;

(d2) : y = (m + 1)x – 3;

(d3) : y = 4x – 1.

Tìm m để:

a) (d1) đi qua gốc tọa độ.

b) (d1), (d2), (d3) đồng quy.

c) (d1) đi qua giao điểm của (d3) và trục hoành.

d) (d2) đi qua giao điểm của (d3) và trục tung.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Để (d) đi qua gốc tọa độ thì (d) đi qua điểm O(0; 0)

Suy ra m – 3 = 0

Hay m = 3

b) Phương trình hoành độ giao điểm M của (d1) và (d3) là:

(2x + m – 3) – (4x – 1) = 0

2x + m – 3 – 4x + 1 = 0

– 2x + m – 2 = 0

x = \(\frac{{m - 2}}{2}\)

Suy ra y = 4. \(\frac{{m - 2}}{2}\) 1 = 2(m – 2) – 1 = 2m – 5

Do đó \(M\left( {\frac{{m - 2}}{2};2m - 5} \right)\)

Để (d1), (d2), (d3) đồng quy thì M thuộc (d2)

Hay 2m – 5 = (m + 1). \(\frac{{m - 2}}{2}\) – 3

\( \Leftrightarrow 2m - 5 = \frac{{{m^2} - m - 2}}{2} - 3\)

\( \Leftrightarrow 2m - 5 = \frac{{{m^2} - m - 8}}{2}\)

4m – 10 = m2 – m – 8

m2 – 5m + 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = \frac{{5 + \sqrt {17} }}{2}\\m = \frac{{5 - \sqrt {17} }}{2}\end{array} \right.\)

c) Hoành độ giao điểm của (d3) và trục hoành là

4x – 1 = 0 \( \Leftrightarrow x = \frac{1}{4}\)

Nên giao điểm của (d3) và trục hoành là \(A\left( {\frac{1}{4};0} \right)\).

Để (d1) đi qua giao điểm của (d3) và trục hoành thì A thuộc (d1)

Suy ra 0 = 2. \(\frac{1}{4}\)  + m – 3

m – \(\frac{5}{2}\) = 0

m = \(\frac{5}{2}\)

d) Tung độ giao điểm của (d3) và trục tung là

y = 4x – 1 = 4 . 0 – 1 = – 1

Nên giao điểm của (d3) và trục tung là B(0; – 1)

Để (d2) đi qua giao điểm của (d3) và trục tung thì B thuộc (d2)

Suy ra – 1 = (m + 1) . 0 – 3

– 1 = – 3 (vô lý)

Vậy không có giá trị m thỏa mãn yêu cầu đề bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây: a) vecto OA (ảnh 1)

a) Vì ABCD là hình bình hành tâm O

Nên O là giao điểm của AC và BD, AB = CD, AD = BC

Suy ra O là trung điểm của AC và BD

Do đó OA = OC, OB = OD

Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)

c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)

Ta có

\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)

= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)

d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

Câu 2

Cho biết log25 7 = a và log2 5 = b. Tính \({\log _{\sqrt[3]{5}}}\frac{{49}}{8}\) theo a, b.

Lời giải

Đáp án đúng là: D

Ta có:

Cho biết log25 7 = a và log2 5 = b. Tính log căn bậc ba 5 = 49/8 theo a, b (ảnh 1)

Do đó :

Cho biết log25 7 = a và log2 5 = b. Tính log căn bậc ba 5 = 49/8 theo a, b (ảnh 2)

Vậy ta chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình lăng trụ ABC.A’B’C biết A’.ABC là tứ diện đều cạnh bằng a. Tính thể tích khối A’BCC’B’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay