Câu hỏi:

25/04/2023 2,150

Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a, đường thẳng BC’ tạo với mặt phẳng (ACC’A’) một góc 30°. Tính thể tích V của khối lăng trụ ABC.A’B’C’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng a, đường thẳng BC’ tạo (ảnh 1)

Gọi H là trung điểm của AC.

Ta có: tam giác ABC là tam giác đều nên BH AC.

Mà BH (ABC) và (ABC) (ACC’A’).

Do đó BH (ACC’A’)

Lại có C’H (ACC’A’) nên BH C’H.

Suy ra góc giữa BC’ và (ACC’A’) là \(\widehat {BC'H}\)

Do đó \(\widehat {BC'H} = 30^\circ \).

Xét tam giác BHC’ vuông tại H có

\(C'H = \frac{{BH}}{{\tan 30^\circ }} = \frac{{a\sqrt 3 }}{2}:\frac{{\sqrt 3 }}{3} = \frac{{3{\rm{a}}}}{2}\)

Xét tam giác CHC’ vuông tại C có \(C'C = \sqrt {C'{H^2} - C{H^2}} = \sqrt {\frac{{9{{\rm{a}}^2}}}{4} - \frac{{{a^2}}}{4}} = a\sqrt 2 \)

Thể tích khối lăng trụ là

\(V = C'C.{S_{ABC}} = C'C.\frac{1}{2}.BH.AC = a\sqrt 2 .\frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{\sqrt 6 }}{4}{a^3}\)

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có tâm O. Xác định các vectơ sau đây: a) vecto OA (ảnh 1)

a) Vì ABCD là hình bình hành tâm O

Nên O là giao điểm của AC và BD, AB = CD, AD = BC

Suy ra O là trung điểm của AC và BD

Do đó OA = OC, OB = OD

Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)

c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)

Ta có

\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)

= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)

d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)

Câu 2

Lời giải

Đáp án đúng là: D

Ta có:

Cho biết log25 7 = a và log2 5 = b. Tính log căn bậc ba 5 = 49/8 theo a, b (ảnh 1)

Do đó :

Cho biết log25 7 = a và log2 5 = b. Tính log căn bậc ba 5 = 49/8 theo a, b (ảnh 2)

Vậy ta chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP