Cho một hình chóp tam giác đều có cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy một góc α. Thể tích của hình chóp là:
Cho một hình chóp tam giác đều có cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy một góc α. Thể tích của hình chóp là:
Quảng cáo
Trả lời:
Đáp án đúng là: B

Gọi H là tâm của tam giác đều ABC cạnh a.
SH ⊥ (ABC) và \(\widehat {SAH} = \alpha \)
Gọi I là trung điểm của BC
Suy ra \(AH = \frac{2}{3}AI = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)
Xét tam giác vuông AHS có \[{\rm{cos}}\alpha = \frac{{AH}}{{SA}}\]
Suy ra \[{\rm{bcos}}\alpha = \frac{{a\sqrt 3 }}{3} \Rightarrow a = b\sqrt 3 \cos \alpha \]
Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{4}{b^2}co{{\rm{s}}^2}\alpha \).
Mà SH = SA . sinα = b . sinα
Thể tích hình chóp là \(V = \frac{1}{3}.SH.{S_{ABC}} = \frac{1}{3}.b\sin \alpha .\frac{{3\sqrt 3 }}{4}{b^2}co{{\rm{s}}^2}\alpha = \frac{{\sqrt 3 }}{4}{b^3}{\cos ^2}\alpha \sin \alpha \).
Vậy ta chọn đáp án B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số gạo kho thứ nhất nhiều hơn số gạo kho thứ hai là:
17 – 8 = 9 (tấn)
Số gạo lúc đầu của kho thứ nhất là:
(155 + 9) : 2 = 82 (tấn)
Số gạo lúc đầu của kho thứ hai là
155 – 82 = 73 (tấn)
Vậy lúc đầu kho thứ nhất có 82 tấn gạo, kho thứ hai có 73 tấn gạo.
Lời giải

a) Vì ABCD là hình bình hành tâm O
Nên O là giao điểm của AC và BD, AB = CD, AD = BC
Suy ra O là trung điểm của AC và BD
Do đó OA = OC, OB = OD
Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)
c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)
Ta có
\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)
= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)
d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.