Cho tam giác ABC có các đường cao bằng 12 cm, 15 cm, 20 cm. Chứng minh tam giác ABC là tam giác vuông.
Cho tam giác ABC có các đường cao bằng 12 cm, 15 cm, 20 cm. Chứng minh tam giác ABC là tam giác vuông.
Quảng cáo
Trả lời:
Gọi độ dài 3 cạnh của tam giác là a, b, c. Chiều cao tương ứng với 3 cạnh trên lần lượt là ha = 12, hb = 15, hc = 20
Diện tích tam giác ABC là
\[S = \frac{{a{h_a}}}{2} = \frac{{b{h_b}}}{2} = \frac{{c{h_c}}}{2}\]
⇔ aha = bhb = chc
⇔ 12a = 15b = 20c = k
Suy ra \(a = \frac{k}{{12}},b = \frac{k}{{15}},c = \frac{k}{{20}}\)
Ta có: \({a^2} = \frac{{{k^2}}}{{144}}\) và \({b^2} + {c^2} = \frac{{{k^2}}}{{225}} + \frac{{{k^2}}}{{400}} = \frac{{{k^2}}}{{144}}\)
Do đó a2 = b2 + c2
Suy ra tam giác ABC là tam giác vuông.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì ABCD là hình bình hành tâm O
Nên O là giao điểm của AC và BD, AB = CD, AD = BC
Suy ra O là trung điểm của AC và BD
Do đó OA = OC, OB = OD
Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)
c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)
Ta có
\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)
= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)
d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
Lời giải
Số gạo kho thứ nhất nhiều hơn số gạo kho thứ hai là:
17 – 8 = 9 (tấn)
Số gạo lúc đầu của kho thứ nhất là:
(155 + 9) : 2 = 82 (tấn)
Số gạo lúc đầu của kho thứ hai là
155 – 82 = 73 (tấn)
Vậy lúc đầu kho thứ nhất có 82 tấn gạo, kho thứ hai có 73 tấn gạo.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.