Câu hỏi:
25/04/2023 313
Tìm tất cá các giá trị thực của tham số m để hàm số \(y = \frac{1}{3}{x^3} - 2m{{\rm{x}}^2} + 4{\rm{x}} - 5\)
đồng biến trên ℝ.
Tìm tất cá các giá trị thực của tham số m để hàm số \(y = \frac{1}{3}{x^3} - 2m{{\rm{x}}^2} + 4{\rm{x}} - 5\)
đồng biến trên ℝ.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: y’ = x2 – 4mx + 4
△’ = (– 2m)2 – 4 = 4m2 – 4
Để làm số đồng biến trên ℝ thì y’ ≥ 0, ∀x ∈ ℝ
⇔ \(\left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}1 > 0\\4{m^2} - 4 \le 0\end{array} \right.\)
⇔ m2 – 1 ≤ 0
⇔ – 1 ≤ m ≤ 1
Vậy – 1 ≤ m ≤ 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì ABCD là hình bình hành tâm O
Nên O là giao điểm của AC và BD, AB = CD, AD = BC
Suy ra O là trung điểm của AC và BD
Do đó OA = OC, OB = OD
Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {O{\rm{D}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
b) Ta có \(\overrightarrow {OA} + \overrightarrow {BO} + \overrightarrow {CO} + \overrightarrow {{\rm{DO}}} = (\overrightarrow {OA} + \overrightarrow {CO} ) + (\overrightarrow {BO} + \overrightarrow {{\rm{DO}}} ) = \overrightarrow {CA} + \overrightarrow 0 = \overrightarrow {CA} \)
c) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} = \overrightarrow {AC} \)
Ta có
\(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} = (\overrightarrow {AC} + \overrightarrow {BA} + \overrightarrow {{\rm{DA}}} ) + \overrightarrow {B{\rm{D}}} = \left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BA} + \overrightarrow {DA} } \right) + \overrightarrow {B{\rm{D}}} \)
= \(\overrightarrow 0 + \overrightarrow {B{\rm{D}}} = \overrightarrow {B{\rm{D}}} \)
d) Ta có \(\overrightarrow {OA} + \overrightarrow {CB} + \overrightarrow {OC} + \overrightarrow {{\rm{AD}}} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {CB} + \overrightarrow {{\rm{AD}}} ) = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \)
Lời giải
Đáp án đúng là: D
Ta có:

Do đó :

Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.