Câu hỏi:
12/07/2024 10,470Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.
a) Chứng minh các tam giác ADF và BAE bằng nhau.
b) Chứng minh MN vuông góc AF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì ABCD là hình vuông nên AB = AD
Xét DADF và DBAE có
AB = AD (chứng minh trên)
\(\widehat {BA{\rm{E}}} = \widehat {ADF}\left( { = 90^\circ } \right)\)
AE = DF (giả thiết)
Suy ra DADF = DBAE (c.g.c).
b) Vì DADF = DBAE nên \[\widehat {F{\rm{AD}}} = \widehat {EBA},\widehat {{\rm{AFD}}} = \widehat {BE{\rm{A}}}\] (các cặp góc tương ứng)
Gọi G là giao điểm của AF và BE
Xét tam giác AGE có
\[\widehat {AGE} + \widehat {AEG} + \widehat {{\rm{GAE}}} = 180^\circ \] (tổng ba góc trong một tam giác)
Suy ra \[\widehat {{\rm{AGE}}} + \left( {\widehat {AF{\rm{D}}} + \widehat {FAD}} \right) = 180^\circ \]
Hay \[\widehat {{\rm{AGE}}} + 90^\circ = 180^\circ \]
Suy ra \[\widehat {{\rm{AGE}}} = 90^\circ \]
Do đó BE ⊥ AF
Xét tam giác EBF có M là trung điểm của EF, N là trung điểm của BF
Suy ra MN là đường trung bình của tam giác
Do đó MN // BE
Mà BE ⊥ AF (chứng minh trên)
Suy ra MN ⊥ AF
Vậy MN ⊥ AF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.
a) Chứng minh tam giác EDF vuông cân.
b) Gọi I là trung điểm của EF. Chứng minh BI = DI.
c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.
Câu 3:
Câu 4:
Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.
Câu 5:
Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Câu 6:
Số tự nhiên thích hợp để điền vào dãy số sau: 3, 17, 59, 185, 563, ... là số nào?
về câu hỏi!