Câu hỏi:
12/07/2024 25,918Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Vì AB, AC là tiếp tuyến của (O) nên AB ⊥ OB, AC ⊥ OC
Do đó \(\widehat {ABO} = \widehat {ACO} = 90^\circ \)
Suy ra A, B, O, C cùng thuộc đường tròn đường kính AO.
b) Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A, suy ra AB = AC
Hay A thuộc trung trực của BC
Mà O thuộc trung trực của BC (vì OB = OC)
Suy ra AO là trung trực của BC
Do đó AO ⊥ BC.
Xét tam giác ABO vuông tại B có BH ⊥ AO
Suy ra OB2 = OH . OA (hệ thức lượng trong tam giác vuông)
Mà OB = OD (cùng là bán kính của (O)).
Suy ra OD2 = OH . OA.
Do đó \(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\)
Xét tam giác OHD và tam giác ODA có
\(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\) (Chứng minh trên)
\(\widehat {DOA}\) là góc chung
Suy ra (c.g.c)
c) Ta có OB2 = OH . OA (chứng minh câu b)
Mà OB = OE, suy ra OE2 = OH . OA
Do đó \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\)
Xét tam giác OHE và tam giác OEA có
\(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\) (Chứng minh trên)
\(\widehat {EOA}\) là góc chung
Suy ra (c.g.c)
Do đó \(\widehat {EHO} = \widehat {A{\rm{E}}O}\) (hai góc tương ứng)
Mặt khác \(\widehat {DEO} = \widehat {EDO}\) (vì tam giác ODE cân tại O)
Suy ra \(\widehat {EHO} = \widehat {{\rm{ED}}O}\)
Xét tứ giác HDEO có \(\widehat {EHO} = \widehat {{\rm{ED}}O}\), mà hai góc này cùng nhìn cạnh EO trong tứ giác
Suy ra tứ giác HDEO nội tiếp
Do đó \(\widehat {DHA} = \widehat {AEO} = \widehat {OHE}\)
Suy ra \(\widehat {DHB} = \widehat {BHE}\) nên \(HB\) là tia phân giác của góc DHE.
Hay CB trùng với tia phân giác của góc DHE.
d) Gọi G là giao điểm của BC và AE
Do HG là tia phân giác của \(\widehat {DHE}\)nên \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{HD}}{{HE}}\) (1)
Mà HA ⊥ HG
Suy ra HA là tia phân giác ngoài của tam giác HED
Do đó \(\frac{{A{\rm{D}}}}{{A{\rm{E}}}} = \frac{{H{\rm{D}}}}{{HE}}\) (2)
Từ (1) và (2) suy ra \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\left( { = \frac{{H{\rm{D}}}}{{HE}}} \right)\) (3)
Xét DABE có DM // BE nên \(\frac{{M{\rm{D}}}}{{BE}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\) (hệ quả định lí Thales) (4)
Xét DGBE có DN // BE nên \(\frac{{{\rm{ND}}}}{{BE}} = \frac{{{\rm{GD}}}}{{{\rm{GE}}}}\) (hệ quả định lí Thales) (5)
Từ (3), (4) và (5), suy ra \(\frac{{{\rm{MD}}}}{{BE}} = \frac{{{\rm{ND}}}}{{{\rm{BE}}}}\)
Hay MD = ND
Do đó D là trung điểm của MN
Vậy D là trung điểm của MN.
Đã bán 187
Đã bán 1,3k
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.
a) Chứng minh tam giác EDF vuông cân.
b) Gọi I là trung điểm của EF. Chứng minh BI = DI.
c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.
Câu 3:
Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Câu 4:
Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.
a) Chứng minh các tam giác ADF và BAE bằng nhau.
b) Chứng minh MN vuông góc AF.
Câu 5:
Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận