Câu hỏi:

12/07/2024 18,560

Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).

a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh: OA BC tại H và OD2 = OH . OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA.

c) Chứng minh CB trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn  (ảnh 1)

a) Vì AB, AC là tiếp tuyến của (O) nên AB OB, AC OC

Do đó \(\widehat {ABO} = \widehat {ACO} = 90^\circ \)

Suy ra A, B, O, C cùng thuộc đường tròn đường kính AO.

b) Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A, suy ra AB = AC

Hay A thuộc trung trực của BC

Mà O thuộc trung trực của BC (vì OB = OC)

Suy ra AO là trung trực của BC

Do đó AO BC.

Xét tam giác ABO vuông tại B có BH AO

Suy ra OB2 = OH . OA (hệ thức lượng trong tam giác vuông)

Mà OB = OD (cùng là bán kính của (O)).

Suy ra OD2 = OH . OA.

Do đó \(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\)

Xét tam giác OHD và tam giác ODA có

\(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\) (Chứng minh trên)

\(\widehat {DOA}\) là góc chung

Suy ra  (c.g.c)

c) Ta có OB2 = OH . OA (chứng minh câu b)

Mà OB = OE, suy ra OE2 = OH . OA

Do đó \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\)

Xét tam giác OHE và tam giác OEA có

\(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\) (Chứng minh trên)

\(\widehat {EOA}\) là góc chung

Suy ra  (c.g.c)

Do đó \(\widehat {EHO} = \widehat {A{\rm{E}}O}\) (hai góc tương ứng)  

Mặt khác \(\widehat {DEO} = \widehat {EDO}\) (vì tam giác ODE cân tại O)

Suy ra \(\widehat {EHO} = \widehat {{\rm{ED}}O}\)

Xét tứ giác HDEO có \(\widehat {EHO} = \widehat {{\rm{ED}}O}\), mà hai góc này cùng nhìn cạnh EO trong tứ giác

Suy ra tứ giác HDEO nội tiếp

Do đó \(\widehat {DHA} = \widehat {AEO} = \widehat {OHE}\)

Suy ra \(\widehat {DHB} = \widehat {BHE}\) nên \(HB\) là tia phân giác của góc DHE.

Hay CB trùng với tia phân giác của góc DHE.

d) Gọi G là giao điểm của BC và AE

Do HG là tia phân giác của \(\widehat {DHE}\)nên \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{HD}}{{HE}}\) (1)

Mà HA HG

Suy ra HA là tia phân giác ngoài của tam giác HED

Do đó \(\frac{{A{\rm{D}}}}{{A{\rm{E}}}} = \frac{{H{\rm{D}}}}{{HE}}\) (2)

Từ (1) và (2) suy ra \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\left( { = \frac{{H{\rm{D}}}}{{HE}}} \right)\) (3)

Xét DABE có DM // BE nên \(\frac{{M{\rm{D}}}}{{BE}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\) (hệ quả định lí Thales) (4)

Xét DGBE có DN // BE nên \(\frac{{{\rm{ND}}}}{{BE}} = \frac{{{\rm{GD}}}}{{{\rm{GE}}}}\) (hệ quả định lí Thales) (5)

Từ (3), (4) và (5), suy ra \(\frac{{{\rm{MD}}}}{{BE}} = \frac{{{\rm{ND}}}}{{{\rm{BE}}}}\)

Hay MD = ND

Do đó D là trung điểm của MN

Vậy D là trung điểm của MN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.

a) Chứng minh: Tứ giác BHCK là hình bình hành.

b) Chứng minh BK vuông góc AB và CK vuông góc AC.

c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Xem đáp án » 12/07/2024 32,728

Câu 2:

Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.

a) Chứng minh tam giác EDF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh BI = DI.

c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.

Xem đáp án » 12/07/2024 17,750

Câu 3:

Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.

a) Chứng minh các tam giác ADF và BAE bằng nhau.

b) Chứng minh MN vuông góc AF.

Xem đáp án » 12/07/2024 11,734

Câu 4:

Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:

a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.

b) AM = AN.

c) AI vuông góc với BC.

Xem đáp án » 12/07/2024 9,005

Câu 5:

Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.

Xem đáp án » 13/07/2024 6,578

Câu 6:

Cho hình chóp S.ABCD, đáy là hình thang có đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB.

a) Chứng minh MN // CD.

b) Tìm giao điểm P của SC và (AND).

c) Gọi I là giao điểm của AN và DP. Chứng minh SI // AB // CD.

Xem đáp án » 13/07/2024 5,328

Bình luận


Bình luận