Câu hỏi:

13/07/2024 7,397

Xác định hàm số bậc nhất y = ax + b (a ≠ 0) biết rằng đồ thị của hàm số này song song với đường thẳng y = 2x + 3 và cắt trục hoành tại điểm có hoành độ là 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Vì đồ thị của hàm số y = ax + b song song với đường thẳng y = 2x + 3 nên \(\left\{ \begin{array}{l}a = 2\\b \ne 3\end{array} \right.\).

Khi đó ta có hàm số y = 2x + b (b 3).

• Vì đồ thị của hàm số y = 2x + b cắt trục hoành tại điểm có hoành độ là 2 nên điểm A( 2; 0) thuộc đồ thị hàm số y = 2x + b

Suy ra 0 = 2 . ( 2) + b

Hay b = 4 (thỏa mãn b ≠ 3)

Vậy y = 2x + 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau  (ảnh 1)

a) Xét tứ giác BHCK có:               

MH = MK và MB = MI

Suy ra: BHCK là hình bình hành.

b) Vì BHCK là hình bình hành (chứng minh câu a) 

Suy ra: BK // HC và CK // BH (tính chất hình bình hành)

Mà CH AB và BH AC

Suy ra: BK AB và CK AC.

c) Vì I đối xứng với H qua BC nên BC là đường trung trực của HI 

Mà M thuộc BC, suy ra MH = MI (tính chất đường trung trực) 

\[MH = MK = \frac{1}{2}HK\]

Suy ra: \[MI = MH = MK = \frac{1}{2}HK\]

Do đó tam giác HIK vuông tại I hay HI IK

Mà BC HI (do BC là đường trung trực của HI)

Suy ra IK // BC 

Do đó BIKC là hình thang                  (1) 

Ta có BC là đường trung trực của HI, suy ra CI = CH 

Mà CH = BK (vì BKCH là hình bình hành) 

Suy ra BK = CI                         (2)

Từ (1) và (2) suy ra BICK là hình thang cân (dấu hiệu nhận biết)

d) Gọi giao điểm của BC và HI là J.

Vì BK // CH nên GHCK là hình thang

Để hình thang GHCK là hình thang cân thì \(\widehat {GHC} = \widehat {KCH}\)

\(\widehat {HCK} + \widehat {HCA} = 90^\circ \)\(\widehat {GHC} + \widehat {HCB} = 90^\circ \) (vì tam giác HJC vuông tại J)

Suy ra \(\widehat {HCA} = \widehat {HCB}\)

Do đó CH là đường phân giác của tam giác ABC 

Lại có CH là đường cao của tam giác ABC 

Suy ra tam giác ABC cân tại C

Vậy tam giác ABC cân tại C thì GHCK là hình thang cân.

Lời giải

Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn  (ảnh 1)

a) Vì AB, AC là tiếp tuyến của (O) nên AB OB, AC OC

Do đó \(\widehat {ABO} = \widehat {ACO} = 90^\circ \)

Suy ra A, B, O, C cùng thuộc đường tròn đường kính AO.

b) Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A, suy ra AB = AC

Hay A thuộc trung trực của BC

Mà O thuộc trung trực của BC (vì OB = OC)

Suy ra AO là trung trực của BC

Do đó AO BC.

Xét tam giác ABO vuông tại B có BH AO

Suy ra OB2 = OH . OA (hệ thức lượng trong tam giác vuông)

Mà OB = OD (cùng là bán kính của (O)).

Suy ra OD2 = OH . OA.

Do đó \(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\)

Xét tam giác OHD và tam giác ODA có

\(\frac{{OD}}{{OA}} = \frac{{OH}}{{O{\rm{D}}}}\) (Chứng minh trên)

\(\widehat {DOA}\) là góc chung

Suy ra  (c.g.c)

c) Ta có OB2 = OH . OA (chứng minh câu b)

Mà OB = OE, suy ra OE2 = OH . OA

Do đó \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\)

Xét tam giác OHE và tam giác OEA có

\(\frac{{OH}}{{OE}} = \frac{{OE}}{{OA}}\) (Chứng minh trên)

\(\widehat {EOA}\) là góc chung

Suy ra  (c.g.c)

Do đó \(\widehat {EHO} = \widehat {A{\rm{E}}O}\) (hai góc tương ứng)  

Mặt khác \(\widehat {DEO} = \widehat {EDO}\) (vì tam giác ODE cân tại O)

Suy ra \(\widehat {EHO} = \widehat {{\rm{ED}}O}\)

Xét tứ giác HDEO có \(\widehat {EHO} = \widehat {{\rm{ED}}O}\), mà hai góc này cùng nhìn cạnh EO trong tứ giác

Suy ra tứ giác HDEO nội tiếp

Do đó \(\widehat {DHA} = \widehat {AEO} = \widehat {OHE}\)

Suy ra \(\widehat {DHB} = \widehat {BHE}\) nên \(HB\) là tia phân giác của góc DHE.

Hay CB trùng với tia phân giác của góc DHE.

d) Gọi G là giao điểm của BC và AE

Do HG là tia phân giác của \(\widehat {DHE}\)nên \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{HD}}{{HE}}\) (1)

Mà HA HG

Suy ra HA là tia phân giác ngoài của tam giác HED

Do đó \(\frac{{A{\rm{D}}}}{{A{\rm{E}}}} = \frac{{H{\rm{D}}}}{{HE}}\) (2)

Từ (1) và (2) suy ra \(\frac{{{\rm{GD}}}}{{{\rm{GE}}}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\left( { = \frac{{H{\rm{D}}}}{{HE}}} \right)\) (3)

Xét DABE có DM // BE nên \(\frac{{M{\rm{D}}}}{{BE}} = \frac{{A{\rm{D}}}}{{A{\rm{E}}}}\) (hệ quả định lí Thales) (4)

Xét DGBE có DN // BE nên \(\frac{{{\rm{ND}}}}{{BE}} = \frac{{{\rm{GD}}}}{{{\rm{GE}}}}\) (hệ quả định lí Thales) (5)

Từ (3), (4) và (5), suy ra \(\frac{{{\rm{MD}}}}{{BE}} = \frac{{{\rm{ND}}}}{{{\rm{BE}}}}\)

Hay MD = ND

Do đó D là trung điểm của MN

Vậy D là trung điểm của MN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay