Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

5sin2x + 12cos2x = 13

\( \Leftrightarrow \frac{5}{{13}}\sin 2x + \frac{{12}}{{13}}\cos 2x = 1\)  (*)

Chọn góc a thỏa mãn \(\sin a = \frac{5}{{13}}\), ta có \({\left( {\frac{5}{{13}}} \right)^2} + {\left( {\frac{{12}}{{13}}} \right)^2} = 1\) nên \[\cos a = \frac{{12}}{{13}}\].

Khi đó (*) \( \Leftrightarrow \sin a\sin 2x + \cos a\cos 2x = 1\)

\(\begin{array}{l} \Leftrightarrow \cos \left( {2x - a} \right) = 1\\ \Leftrightarrow 2x - a = k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

\[\begin{array}{l} \Leftrightarrow 2x = a + k2\pi \,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow x = \frac{a}{2} + k\pi \left( {k \in \mathbb{Z}} \right)\end{array}\]

Vậy nghiệm của phương trình là: \(x = \frac{a}{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\) với a thỏa mãn \(\sin a = \frac{5}{{13}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .

Lời giải

Cho hình chóp S.ABCD có AD không song song với BC, lấy I thuộc SA so cho SA (ảnh 1)

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)

b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)

c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)

d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)

e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)

Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)

\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\) H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP