Câu hỏi:
11/07/2024 353
Hình bình hành ABCD có AD = 2AB.Từ C vẽ CE ⊥ AB. Nối E với trung điểm M của AD. Từ M vẽ MF ⊥ CE (F ∈ CE) cắt BC tại N.
a. ∆EMC là tam giác gì?
b. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\).
Hình bình hành ABCD có AD = 2AB.Từ C vẽ CE ⊥ AB. Nối E với trung điểm M của AD. Từ M vẽ MF ⊥ CE (F ∈ CE) cắt BC tại N.
a. ∆EMC là tam giác gì?
b. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a. Ta có MF ⊥ CE và CE ⊥ AB nên MF // AB hay MF // AE.
Hình thang AECD (do AE // CD) có MF // AE // CD
Và M là trung điểm của AD (gt) ⇒ F là trung điểm của EC.
Tam giác MEC có MF là đường trung tuyến (F là trung điểm của EC) và MF là đường cao (do MF ⊥ EC)
⇒ ΔMEC cân tại M.
b. Ta có: AD = 2AB (gt)
AD = 2MD (M là trung điểm của AD)
Và AB = CD (ABCD là hình bình hành) ⇒ MD = CD
Hình bình hành MNCD có MD = CD nên là hình thoi.
⇒ CM là đường phân giác \(\widehat {NCD}\).
Ta có: ΔMEC cân tại M nên MF là tia phân giác của \(\widehat {EMC}\) \( \Rightarrow \widehat {EMF} = \widehat {CMF}\)
Mà \(\widehat {EMF} = \widehat {AEM}\)(2 góc so le trong và AE // MF)
Và \(\widehat {CMF} = \widehat {MCD}\)(2 góc so le trong và MF // CD)
Nên \(\widehat {AEM} = \widehat {MCD}\)
Ta có: \(\widehat {AEM} = \widehat {MCD};2\widehat {MCD} = \widehat {NCD}\)(CM là tia phân giác của \(\widehat {NCD}\)).
Và \(\widehat {NCD} = \widehat {BAD}\)(ABCD là hình bình hành) \( \Rightarrow 2\widehat {AEM} = \widehat {BAD}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .
Lời giải

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)
b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)
c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)
d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)
e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)
Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)
\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)⇒ H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.