Câu hỏi:

11/07/2024 342

Hình bình hành ABCD có AD = 2AB.Từ C vẽ CE AB. Nối E với trung điểm M của AD. Từ M vẽ MF CE (F CE) cắt BC tại N.

a. ∆EMC là tam giác gì?

b. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hình bình hành ABCD có AD = 2AB.Từ C vẽ CE ⊥ AB. Nối E với trung điểm M (ảnh 1)

a. Ta có MF CE và CE AB nên MF // AB hay MF // AE.

Hình thang AECD (do AE // CD) có MF // AE // CD

Và M là trung điểm của AD (gt) F là trung điểm của EC.

Tam giác MEC có MF là đường trung tuyến (F là trung điểm của EC) và MF là đường cao (do MF EC)

ΔMEC cân tại M.

b. Ta có: AD = 2AB (gt)

AD = 2MD (M là trung điểm của AD)

Và AB = CD (ABCD là hình bình hành) MD = CD

Hình bình hành MNCD có MD = CD nên là hình thoi.

CM là đường phân giác \(\widehat {NCD}\).

Ta có: ΔMEC cân tại M nên MF là tia phân giác của \(\widehat {EMC}\) \( \Rightarrow \widehat {EMF} = \widehat {CMF}\)

\(\widehat {EMF} = \widehat {AEM}\)(2 góc so le trong và AE // MF)

\(\widehat {CMF} = \widehat {MCD}\)(2 góc so le trong và MF // CD)

Nên \(\widehat {AEM} = \widehat {MCD}\)

Ta có: \(\widehat {AEM} = \widehat {MCD};2\widehat {MCD} = \widehat {NCD}\)(CM là tia phân giác của \(\widehat {NCD}\)).

\(\widehat {NCD} = \widehat {BAD}\)(ABCD là hình bình hành) \( \Rightarrow 2\widehat {AEM} = \widehat {BAD}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .

Lời giải

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE vuông góc AB, nối E với trung  (ảnh 1)

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC) 

MNCD là hình bình hành (1) 

MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2) 

Từ (1) và (2) MNCD là hình thoi. 

b. Do MN // AB // CD (câu a) và M là trung điểm AD 

F là trung điểm EC MF là đường trung tuyến của ∆MEC  với lại MF là đường cao của ∆MEC (MF EC)  ∆MEC cân tại M 

c. ∆MEC cân tại M và MF là đường cao của ∆MEC 

MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\) 

\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác

Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay