Câu hỏi:
13/07/2024 968Cho đường tròn tâm O, đường kính AB = 10 cm. Trên đường tròn tâm O lấy điểm C sao cho AC = 6 cm . Kẻ CH ⊥ AB tại H.
a. So sánh dây AB và dây BC.
b. ∆ABC là tam giác gì? Vì sao?
c. Từ O kẻ OI ⊥ BC tại I. Tính độ dài OI.
d. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại E.
Chứng minh CE × CB = AH × AB.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Vì AB là đường kính của (O), C ∈ (O) ⇒ BC ≤ AB.
Mà C khác A (do AC = 6 cm) nên BC không thể là đường kính của (O) nên BC < AB.
b. Vì C ∈ (O), AB là đường kính ⇒ AC ⊥ BC ⇒ ∆ABC vuông tại C.
c. Do OI ⊥ BC, AC ⊥ BC ⇒ OI // AC.
Mà O là trung điểm của AB (do AB là đường kính và O là tâm của (O)).
⇒ OI là đường trung bình của ∆ABC
⇒ OI = \(\frac{1}{2}AC = 3\) (cm).
d. Vì AE là tiếp tuyến của (O) ⇒ AE ⊥ AB
Mà AC ⊥ BE ⇒ CE.CB = \(A{C^2}\) (1) (hệ thức lượng trong tam giác vuông EAB)
Lại có: ∆ABC có \(\widehat {ACB} = 90^\circ ,CH \bot AB \Rightarrow A{C^2} = AH.AB\) (2)
Từ (1) và (2) \( \Rightarrow CE.CB = AH.AB\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình chóp S.ABCD có AD không song song với BC, lấy I ∈ SA so cho SA = 3IA, lấy J ∈ SC; M là trung điểm SB.
a. Tìm giao tuyến của (SAD) và (SBC).
b. Tìm giao điểm E của AB và (IJM).
c. Tìm giao điểm F của BC và (IJM).
d. Tìm giao điểm N của SD và (IJM).
e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.
Câu 3:
Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE ⊥ AB, nối E với trung điểm M của AD, từ M kẻ MF ⊥ CE, MF ∩ BC = N.
a. Hỏi MNCD là hình gì?
b. ∆EMC là tam giác gì?
c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)
Câu 4:
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.
Câu 5:
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.
a. Chứng minh: OD ⊥ AB và từ đó suy ra D là trung điểm của AB.
b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).
c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.
Câu 6:
Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.
b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.
về câu hỏi!