Câu hỏi:

13/07/2024 1,915

Cho đường tròn tâm O, đường kính AB = 10 cm. Trên đường tròn tâm O lấy điểm C sao cho AC = 6 cm . Kẻ CH AB tại H.

a. So sánh dây AB và dây BC.

b. ∆ABC là tam giác gì? Vì sao?

c. Từ O kẻ OI BC tại I. Tính độ dài OI.

d. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại E.

Chứng minh CE × CB = AH × AB.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn tâm O, đường kính AB = 10 cm. Trên đường tròn tâm O lấy điểm C (ảnh 1)

a. Vì AB là đường kính của (O), C (O) BC ≤ AB.

Mà C khác A (do AC = 6 cm) nên BC không thể là đường kính của (O) nên BC < AB.

b. Vì C (O), AB là đường kính AC BC ∆ABC vuông tại C.

c. Do OI BC, AC BC OI // AC.

Mà O là trung điểm của AB (do AB là đường kính và O là tâm của (O)).

OI là đường trung bình của ∆ABC

OI = \(\frac{1}{2}AC = 3\) (cm).

d. Vì AE là tiếp tuyến của (O) AE AB

Mà AC BE CE.CB = \(A{C^2}\) (1) (hệ thức lượng trong tam giác vuông EAB)

Lại có: ∆ABC có \(\widehat {ACB} = 90^\circ ,CH \bot AB \Rightarrow A{C^2} = AH.AB\)  (2)

Từ (1) và (2) \( \Rightarrow CE.CB = AH.AB\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE AB, nối E với trung điểm M của AD, từ M kẻ MF CE, MF ∩ BC = N.

a. Hỏi MNCD là hình gì?

b. ∆EMC là tam giác gì?

c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)

Xem đáp án » 13/07/2024 15,687

Câu 2:

Cho hình chóp S.ABCD có AD không song song với BC, lấy I SA so cho SA = 3IA, lấy J SC; M là trung điểm SB.

a. Tìm giao tuyến của (SAD) và (SBC).

b. Tìm giao điểm E của AB và (IJM).

c. Tìm giao điểm F của BC và (IJM).

d. Tìm giao điểm N của SD và (IJM).

e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.

Xem đáp án » 13/07/2024 15,618

Câu 3:

Giải phương trình: \({\cos ^2}x - \sin 2x = 0\).

Xem đáp án » 13/07/2024 15,609

Câu 4:

Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.

Xem đáp án » 13/07/2024 4,042

Câu 5:

Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.

a. Chứng minh: OD AB và từ đó suy ra D là trung điểm của AB.

b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).

c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.

Xem đáp án » 13/07/2024 3,888

Câu 6:

Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.

a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.

b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.

Xem đáp án » 13/07/2024 3,433

Câu 7:

Phân tích đa thức thành nhân tử: a3 – 3a + 3b – b3.

Xem đáp án » 13/07/2024 2,664

Bình luận


Bình luận