Câu hỏi:
13/07/2024 641Cho hình bình hành ABCD. Trên đường chéo BD lấy M, N sao cho DM = MN = NB. Gọi O là giao điểm của 2 đường chéo AC và BD.
a. Chứng minh M và N đối xứng với nhau qua O.
b. Gọi P, Q lần lượt là giao điểm của AM và CN với các cạnh DC và AB. Chứng minh P và Q đối xứng nhau qua O.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Do ABCD là hình bình hành nên OD = OB ⟺ DM + MO = ON + NB
Mà DM = NB (gt) ⇒ MO = NO
b. Theo chứng minh a. Ta có \(MO = NO = \frac{1}{2}MN = \frac{1}{2}DM\)
Do đó \(OM = \frac{1}{3}DO\)
Vậy M là trọng tâm của ∆ADC
Do đó AP là đường trung tuyến của ∆ADC ⇒ P là trung điểm của DC
Chứng minh tương tự ta có Q là trung điểm của AB
Xét ∆DBC có: P là trung điểm của DC, O là trung điểm của DB
Do đó OP là đường trung bình trong ∆ACB \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{OP//CB}\\{OP = \frac{1}{2}CB}\end{array}} \right.\)
Tương tự ta có \(\left\{ {\begin{array}{*{20}{c}}{OQ//CB}\\{OQ = \frac{1}{2}CB}\end{array}} \right.\)
Vậy O, P, Q thẳng hàng, OP = OQ
Vậy Q, P đối xứng với nhau qua O.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có AD không song song với BC, lấy I ∈ SA so cho SA = 3IA, lấy J ∈ SC; M là trung điểm SB.
a. Tìm giao tuyến của (SAD) và (SBC).
b. Tìm giao điểm E của AB và (IJM).
c. Tìm giao điểm F của BC và (IJM).
d. Tìm giao điểm N của SD và (IJM).
e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.
Câu 2:
Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE ⊥ AB, nối E với trung điểm M của AD, từ M kẻ MF ⊥ CE, MF ∩ BC = N.
a. Hỏi MNCD là hình gì?
b. ∆EMC là tam giác gì?
c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)
Câu 4:
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.
Câu 5:
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.
a. Chứng minh: OD ⊥ AB và từ đó suy ra D là trung điểm của AB.
b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).
c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.
Câu 6:
Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.
b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
về câu hỏi!