Câu hỏi:

13/07/2024 690

Cho hình bình hành ABCD. Trên đường chéo BD lấy M, N sao cho DM = MN = NB. Gọi O là giao điểm của 2 đường chéo AC và BD.

a. Chứng minh M và N đối xứng với nhau qua O.

b. Gọi P, Q lần lượt là giao điểm của AM và CN với các cạnh DC và AB. Chứng minh P và Q đối xứng nhau qua O.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Trên đường chéo BD lấy M, N sao cho DM = MN = NB (ảnh 1)

a. Do ABCD là hình bình hành nên OD = OB DM + MO = ON + NB

Mà DM = NB (gt) MO = NO

b. Theo chứng minh a. Ta có \(MO = NO = \frac{1}{2}MN = \frac{1}{2}DM\)

Do đó \(OM = \frac{1}{3}DO\)

Vậy M là trọng tâm của ∆ADC

Do đó AP là đường trung tuyến của ∆ADC P là trung điểm của DC

Chứng minh tương tự ta có Q là trung điểm của AB

Xét ∆DBC có: P là trung điểm của DC, O là trung điểm của DB

Do đó OP là đường trung bình trong ∆ACB \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{OP//CB}\\{OP = \frac{1}{2}CB}\end{array}} \right.\)

Tương tự ta có \(\left\{ {\begin{array}{*{20}{c}}{OQ//CB}\\{OQ = \frac{1}{2}CB}\end{array}} \right.\)

Vậy O, P, Q thẳng hàng, OP = OQ

Vậy Q, P đối xứng với nhau qua O.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình: \({\cos ^2}x - \sin 2x = 0\).

Xem đáp án » 13/07/2024 17,310

Câu 2:

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE AB, nối E với trung điểm M của AD, từ M kẻ MF CE, MF ∩ BC = N.

a. Hỏi MNCD là hình gì?

b. ∆EMC là tam giác gì?

c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)

Xem đáp án » 13/07/2024 15,951

Câu 3:

Cho hình chóp S.ABCD có AD không song song với BC, lấy I SA so cho SA = 3IA, lấy J SC; M là trung điểm SB.

a. Tìm giao tuyến của (SAD) và (SBC).

b. Tìm giao điểm E của AB và (IJM).

c. Tìm giao điểm F của BC và (IJM).

d. Tìm giao điểm N của SD và (IJM).

e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.

Xem đáp án » 13/07/2024 15,821

Câu 4:

Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.

Xem đáp án » 13/07/2024 4,634

Câu 5:

Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.

a. Chứng minh: OD AB và từ đó suy ra D là trung điểm của AB.

b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).

c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.

Xem đáp án » 13/07/2024 4,288

Câu 6:

Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.

a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.

b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.

Xem đáp án » 13/07/2024 3,595

Câu 7:

Phân tích đa thức thành nhân tử: a3 – 3a + 3b – b3.

Xem đáp án » 13/07/2024 2,791
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua