Câu hỏi:

19/08/2025 991 Lưu

Cho ∆ABC vuông tại A đường cao AH, AD là tia phân giác \(\widehat {HAC}\).

a. Chứng minh ∆ABD cân tại B.

b. Cho BC = 25 cm, HD = 6 cm. Tính AB.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC vuông tại A đường cao AH, AD là tia phân giác góc HAC (ảnh 1)

a, Có \(\widehat {BAH} = \widehat {BCA}\)(vì cùng phụ với \(\widehat {HAC}\))

\( \Rightarrow \widehat {BAH} + \widehat {HAD} = \widehat {BCA} + \widehat {DAC}\)(vì AD là tia phân giác \(\widehat {HAC}\))

\( \Rightarrow \widehat {BAD} = \widehat {BCA} + \widehat {DAC}\)

Xét ΔADC có \(\widehat {ADB}\)là góc ngoài tại đỉnh D \( \Rightarrow \widehat {ADB} = \widehat {BCA} + \widehat {DAC}\)

\( \Rightarrow \widehat {BAD} = \widehat {ADB}\)

ΔABD cân tại B.

b. Xét ΔABD cân tại B AB = BD

Xét ΔABC vuông tại A

AB² = BH. BC = (BD – HD). BC = (AB – 6). 25 = 25AB – 150

AB² – 25AB + 150 = 0

(AB – 15)(AB – 10) = 0

AB = 15 hoặc AB = 10

Vậy AB = 15cm, hoặc AB = 10 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có AD không song song với BC, lấy I thuộc SA so cho SA (ảnh 1)

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)

b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)

c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)

d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)

e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)

Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)

\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\) H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).

Lời giải

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE vuông góc AB, nối E với trung  (ảnh 1)

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC) 

MNCD là hình bình hành (1) 

MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2) 

Từ (1) và (2) MNCD là hình thoi. 

b. Do MN // AB // CD (câu a) và M là trung điểm AD 

F là trung điểm EC MF là đường trung tuyến của ∆MEC  với lại MF là đường cao của ∆MEC (MF EC)  ∆MEC cân tại M 

c. ∆MEC cân tại M và MF là đường cao của ∆MEC 

MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\) 

\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác

Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP