Câu hỏi:
13/07/2024 752Cho ∆ABC. Chứng minh rằng: \(\cot A + \cot B + \cot C = \frac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(\cot A + \cot B + \cot C = \frac{{\cos A}}{{\sin A}} + \frac{{\cos B}}{{\sin B}} + \frac{{\cos C}}{{\sin C}}\).
Mà áp dụng hệ quả của định lí côsin ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
\( \Rightarrow \cot A + \cot B + \cot C = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc.\sin A}} + \frac{{{a^2} + {c^2} - {b^2}}}{{2ac.\sin B}} + \frac{{{b^2} + {a^2} - {c^2}}}{{2ab.\sin C}}\left( 1 \right)\)
Ta có: \({S_{ABC}} = \frac{1}{2}bc\sin A = \frac{1}{2}ab\sin C = \frac{1}{2}ab\sin B\left( 2 \right)\)
Kết hợp (1) và (2) ta được:
\(\cot A + \cot B + \cot C = \frac{{{b^2} + {c^2} - {a^2}}}{{4{S_{ABC}}}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4{S_{ABC}}}} + \frac{{{b^2} + {a^2} - {a^2}}}{{4{S_{ABC}}}}\)
\( = \frac{{{b^2} + {c^2} - {a^2} + {c^2} + {a^2} - {b^2} + {a^2} + {b^2} - {c^2}}}{{4{S_{ABC}}}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{S_{ABC}}}}\)
\( = \frac{{{a^2} + {b^2} + {c^2}}}{{4\frac{{abc}}{{4R}}}} = \frac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\) (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình chóp S.ABCD có AD không song song với BC, lấy I ∈ SA so cho SA = 3IA, lấy J ∈ SC; M là trung điểm SB.
a. Tìm giao tuyến của (SAD) và (SBC).
b. Tìm giao điểm E của AB và (IJM).
c. Tìm giao điểm F của BC và (IJM).
d. Tìm giao điểm N của SD và (IJM).
e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.
Câu 3:
Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE ⊥ AB, nối E với trung điểm M của AD, từ M kẻ MF ⊥ CE, MF ∩ BC = N.
a. Hỏi MNCD là hình gì?
b. ∆EMC là tam giác gì?
c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)
Câu 4:
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.
Câu 5:
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.
a. Chứng minh: OD ⊥ AB và từ đó suy ra D là trung điểm của AB.
b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).
c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.
Câu 6:
Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.
b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.
về câu hỏi!