Câu hỏi:

13/07/2024 210

Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và đáy bằng 30°. Thể tích khối chóp S.ABC bằng ?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và  (ảnh 1)

Gọi H là hình chiếu của S lên mặt phẳng (ABC). Khối chóp S.ABC đều nên H là trọng tâm ∆ABC.

Gọi I là trung điểm của BC.

Xét ∆ABI có: \(AI = \sqrt {A{B^2} - B{I^2}} = {\sqrt {{a^2} - \left( {\frac{a}{2}} \right)} ^2} = \frac{{a\sqrt 3 }}{2}\).  

Vì H là trọng tâm ∆ABC nên: \(AH = \frac{2}{3}AI = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)  

Lại có: AH là hình chiếu của SA lên mặt phẳng (ABC)

\( \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,AH} \right) = \widehat {SAH} = 30^\circ \).

Xét ∆SAH: \(SH = \tan 30^\circ .AH = \frac{{\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{3} = \frac{a}{3}\)  

\({S_{\Delta ABC}} = \frac{1}{2}AI.BC = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)  

Vậy \({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.\frac{a}{3} = \frac{{{a^3}\sqrt 3 }}{{36}}\).  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE AB, nối E với trung điểm M của AD, từ M kẻ MF CE, MF ∩ BC = N.

a. Hỏi MNCD là hình gì?

b. ∆EMC là tam giác gì?

c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)

Xem đáp án » 13/07/2024 15,687

Câu 2:

Cho hình chóp S.ABCD có AD không song song với BC, lấy I SA so cho SA = 3IA, lấy J SC; M là trung điểm SB.

a. Tìm giao tuyến của (SAD) và (SBC).

b. Tìm giao điểm E của AB và (IJM).

c. Tìm giao điểm F của BC và (IJM).

d. Tìm giao điểm N của SD và (IJM).

e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.

Xem đáp án » 13/07/2024 15,618

Câu 3:

Giải phương trình: \({\cos ^2}x - \sin 2x = 0\).

Xem đáp án » 13/07/2024 15,609

Câu 4:

Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.

Xem đáp án » 13/07/2024 4,042

Câu 5:

Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.

a. Chứng minh: OD AB và từ đó suy ra D là trung điểm của AB.

b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).

c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.

Xem đáp án » 13/07/2024 3,888

Câu 6:

Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.

a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.

b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.

Xem đáp án » 13/07/2024 3,433

Câu 7:

Phân tích đa thức thành nhân tử: a3 – 3a + 3b – b3.

Xem đáp án » 13/07/2024 2,664

Bình luận


Bình luận