Câu hỏi:
13/07/2024 129Trong mặt phẳng tọa độ (Oxy), cho phép biến hình F có biểu thức tọa độ \(x' = \frac{{ - 3x + 4y}}{5};y' = \frac{{4x + 3y}}{5}\). Ảnh của \(\Delta :x + y = 0\) qua phép biến hình F là ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{5x' = - 3x + 4y}\\{5y' = 4x + 3y}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{15x' = - 9x + 12y}\\{20y' = 16x + 12y}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{25x = 20y' - 15x'}\\{4y = 5x' + 3x}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x = 4y' - 3x'}\\{20y = 25x' + 15x}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x = 4y' - 3x'}\\{20y = 25x' + 3\left( {4y' - 3x'} \right)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x = 4y' - 3x'}\\{20y = 16x' + 12y'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x = 4y' - 3x'}\\{5y = 4x' + 3y'}\end{array}} \right.\)
∆: x + y = 0 ⟺ 5x + 5y = 0
\( \Leftrightarrow 4y' - 3x' + 4x' + 3y' = 0 \Leftrightarrow x' + 7y' = 0\)
\( \Rightarrow \Delta ':x + 7y = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình chóp S.ABCD có AD không song song với BC, lấy I ∈ SA so cho SA = 3IA, lấy J ∈ SC; M là trung điểm SB.
a. Tìm giao tuyến của (SAD) và (SBC).
b. Tìm giao điểm E của AB và (IJM).
c. Tìm giao điểm F của BC và (IJM).
d. Tìm giao điểm N của SD và (IJM).
e. Gọi H = MN ∩ BD. Chứng minh rằng: H, E, F thẳng hàng.
Câu 3:
Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE ⊥ AB, nối E với trung điểm M của AD, từ M kẻ MF ⊥ CE, MF ∩ BC = N.
a. Hỏi MNCD là hình gì?
b. ∆EMC là tam giác gì?
c. Chứng minh \(\widehat {BAD} = 2\widehat {AEM}\)
Câu 4:
Cho đường tròn (O; R) và dây AB = 1,6R. Vẽ 1 tiếp tuyến song song AB cắt các tia OA, OB theo thứ tự tại M và N. Tính \({S_{_{\Delta OMN}}}\) theo R.
Câu 5:
Cho đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn (A ≠ B và C). Qua O, kẻ tia Ox // AC, tia Ox cắt AB tại D.
a. Chứng minh: OD ⊥ AB và từ đó suy ra D là trung điểm của AB.
b. Tiếp tuyến tại B của (O) cắt tia Ox tại E. Chứng minh: EA cũng là tiếp tuyến của (O).
c. Tia CA cắt tia BE tại F. Chứng minh: Tia CE đi qua trung điểm I của đường cao AH.
Câu 6:
Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.
b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.
về câu hỏi!