Cho \(P = \left( {\frac{{\sqrt x + \sqrt y }}{{1 - \sqrt {xy} }} + \frac{{\sqrt x - \sqrt y }}{{1 + \sqrt {xy} }}} \right):\left( {1 + \frac{{x + y + 2xy}}{{1 - xy}}} \right)\).
a. Rút gọn P.
b. Tính giá trị của P khi \(x = \frac{2}{{2 + \sqrt 3 }}\) .
Cho \(P = \left( {\frac{{\sqrt x + \sqrt y }}{{1 - \sqrt {xy} }} + \frac{{\sqrt x - \sqrt y }}{{1 + \sqrt {xy} }}} \right):\left( {1 + \frac{{x + y + 2xy}}{{1 - xy}}} \right)\).
a. Rút gọn P.
b. Tính giá trị của P khi \(x = \frac{2}{{2 + \sqrt 3 }}\) .
Quảng cáo
Trả lời:

ĐK: \(xy \ne 1,xy \ge 0\)
a. \(P = \frac{{\left( {\sqrt x + \sqrt y } \right)\left( {1 + \sqrt {xy} } \right) + \left( {\sqrt x + \sqrt y } \right)\left( {1 - \sqrt {xy} } \right)}}{{1 - xy}}:\frac{{1 - xy + x + y + 2xy}}{{1 - xy}}\) \(\)
\(P = \frac{{\sqrt x + \sqrt y + x\sqrt y + y\sqrt x + \sqrt x - x\sqrt y - \sqrt y + y\sqrt x }}{{1 - xy}}:\frac{{1 + x + y + xy}}{{1 - xy}}\)
\(P = \frac{{2\sqrt x + 2y\sqrt x }}{{1 - xy}}.\frac{{1 - xy}}{{\left( {1 + x} \right)\left( {1 + y} \right)}} = \frac{{2\sqrt x \left( {1 + y} \right)}}{{\left( {1 + x} \right)\left( {1 + y} \right)}} = \frac{{2\sqrt x }}{{1 + x}}\)
b. Khi \(x = \frac{2}{{2 + \sqrt 3 }} = \frac{{2\left( {2 - \sqrt 3 } \right)}}{{{2^2} - \sqrt {{3^2}} }} = \frac{{4 - 2\sqrt 3 }}{1}\) hay \(x = {\left( {\sqrt 3 - 1} \right)^2}\)
Khi đó \(P = \frac{{2{{\sqrt {\left( {\sqrt 3 - 1} \right)} }^2}}}{{1 + 4 - 2\sqrt 3 }} = \frac{{2\left( {\sqrt 3 - 1} \right)}}{{5 - 2\sqrt 3 }}\)
\(P = \frac{{\left( {2\sqrt 3 - 2} \right)\left( {5 + 2\sqrt 3 } \right)}}{{{5^2} - {{\left( {2\sqrt 3 } \right)}^2}}} = \frac{{2\left( {3\sqrt 3 + 1} \right)}}{{13}}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)
b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)
c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)
d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)
e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)
Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)
\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)⇒ H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).
Lời giải

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC)
⇒ MNCD là hình bình hành (1)
MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2)
Từ (1) và (2) ⇒ MNCD là hình thoi.
b. Do MN // AB // CD (câu a) và M là trung điểm AD
⇒ F là trung điểm EC ⇒ MF là đường trung tuyến của ∆MEC với lại MF là đường cao của ∆MEC (MF ⊥ EC) ⇒ ∆MEC cân tại M
c. ∆MEC cân tại M và MF là đường cao của ∆MEC
⇒ MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\)
\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác
Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.