Câu hỏi:

13/07/2024 359

Cho phương trình \({x^2} + \left( {2m - 3} \right)x + {m^2} - 2m = 0\)

a. Xác định m để phương trình có hai nghiệm phân biệt.

b. Xác định m để phương trình vô nghiệm.                    

c. Xác định m để phương trình kép.

d. Với giá trị của m thì phương trình có hai nghiệm và tích của chúng bằng 8? Tìm các nghiệm trong trường hợp đó.  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\Delta = {\left( {2m - 3} \right)^2} - 4\left( {{m^2} - 2m} \right) = 4{m^2} - 12m + 9 - 4{m^2} + 8m = - 4m + 9\)

a. Phương trình có 2 nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow - 4m + 9 > 0 \Leftrightarrow m < \frac{9}{4}\)

b. Phương trình vô nghiệm \( \Leftrightarrow \Delta < 0 \Leftrightarrow - 4m + 9 < 0 \Leftrightarrow m > \frac{9}{4}\)

c. Phương trình có nghiệm kép \( \Leftrightarrow \Delta = 0 \Leftrightarrow - 4m + 9 = 0 \Leftrightarrow m = \frac{9}{4}\)

d. \(\left\{ {\begin{array}{*{20}{c}}{\Delta > 0}\\{{x_1}.{x_2} = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < \frac{9}{4}}\\{{m^2} - 2m = 8}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{9}{4}\\\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 2}\end{array}} \right.\end{array} \right. \Leftrightarrow m = - 2\)

Với m = – 2, ta có PT: \({x^2} - 7x + 8 = 0\)

\(x = \frac{{ - b \pm \sqrt \Delta }}{{2a}} = \frac{{7 \pm \sqrt {17} }}{2}\)

Vậy m = –2; \(x = \frac{{7 \pm \sqrt {17} }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .

Lời giải

Cho hình chóp S.ABCD có AD không song song với BC, lấy I thuộc SA so cho SA (ảnh 1)

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)

b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)

c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)

d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)

e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)

Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)

\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\) H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP