Câu hỏi:
13/07/2024 359
Cho phương trình \({x^2} + \left( {2m - 3} \right)x + {m^2} - 2m = 0\)
a. Xác định m để phương trình có hai nghiệm phân biệt.
b. Xác định m để phương trình vô nghiệm.
c. Xác định m để phương trình kép.
d. Với giá trị của m thì phương trình có hai nghiệm và tích của chúng bằng 8? Tìm các nghiệm trong trường hợp đó.
Cho phương trình \({x^2} + \left( {2m - 3} \right)x + {m^2} - 2m = 0\)
a. Xác định m để phương trình có hai nghiệm phân biệt.
b. Xác định m để phương trình vô nghiệm.
c. Xác định m để phương trình kép.
d. Với giá trị của m thì phương trình có hai nghiệm và tích của chúng bằng 8? Tìm các nghiệm trong trường hợp đó.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
\(\Delta = {\left( {2m - 3} \right)^2} - 4\left( {{m^2} - 2m} \right) = 4{m^2} - 12m + 9 - 4{m^2} + 8m = - 4m + 9\)
a. Phương trình có 2 nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow - 4m + 9 > 0 \Leftrightarrow m < \frac{9}{4}\)
b. Phương trình vô nghiệm \( \Leftrightarrow \Delta < 0 \Leftrightarrow - 4m + 9 < 0 \Leftrightarrow m > \frac{9}{4}\)
c. Phương trình có nghiệm kép \( \Leftrightarrow \Delta = 0 \Leftrightarrow - 4m + 9 = 0 \Leftrightarrow m = \frac{9}{4}\)
d. \(\left\{ {\begin{array}{*{20}{c}}{\Delta > 0}\\{{x_1}.{x_2} = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < \frac{9}{4}}\\{{m^2} - 2m = 8}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{9}{4}\\\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 2}\end{array}} \right.\end{array} \right. \Leftrightarrow m = - 2\)
Với m = – 2, ta có PT: \({x^2} - 7x + 8 = 0\)
\(x = \frac{{ - b \pm \sqrt \Delta }}{{2a}} = \frac{{7 \pm \sqrt {17} }}{2}\)
Vậy m = –2; \(x = \frac{{7 \pm \sqrt {17} }}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .
Lời giải

a. Gọi \(AD \cap BC = K \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SK\)
b. Gọi \(IM \cap AB = E \Rightarrow AB \cap \left( {IJM} \right) = E\)
c. Gọi \(JM \cap BC = F \Rightarrow BC \cap \left( {IJM} \right) = F\)
d. Gọi \(AC \cap BD = G,AG \cap IJ = L,ML \cap SD = N \Rightarrow N = SD \cap \left( {IJM} \right)\)
e. Ta có: \(MN \cap BD = H \Rightarrow H \in \left( {MIJ} \right),H \in \left( {ABCD} \right) \Rightarrow H \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)(Hay H thuộc giao tuyến của \(\left( {MNJ} \right);\left( {ABCD} \right)\)
Lại có \(E \in \left( {MIJ} \right) \Rightarrow E \in \left( {MNJ} \right),E \in AB \Rightarrow E \in \left( {ABCD} \right)\)
\(F \in MJ \Rightarrow F \in \left( {MNJ} \right) \cap \left( {ABCD} \right)\)⇒ H, E, F thẳng hàng (cùng thuộc giao tuyến của (MNJ) và (ABCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.