Câu hỏi:

13/07/2024 351

Cho phương trình \({x^2} + \left( {2m - 3} \right)x + {m^2} - 2m = 0\)

a. Xác định m để phương trình có hai nghiệm phân biệt.

b. Xác định m để phương trình vô nghiệm.                    

c. Xác định m để phương trình kép.

d. Với giá trị của m thì phương trình có hai nghiệm và tích của chúng bằng 8? Tìm các nghiệm trong trường hợp đó.  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\Delta = {\left( {2m - 3} \right)^2} - 4\left( {{m^2} - 2m} \right) = 4{m^2} - 12m + 9 - 4{m^2} + 8m = - 4m + 9\)

a. Phương trình có 2 nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow - 4m + 9 > 0 \Leftrightarrow m < \frac{9}{4}\)

b. Phương trình vô nghiệm \( \Leftrightarrow \Delta < 0 \Leftrightarrow - 4m + 9 < 0 \Leftrightarrow m > \frac{9}{4}\)

c. Phương trình có nghiệm kép \( \Leftrightarrow \Delta = 0 \Leftrightarrow - 4m + 9 = 0 \Leftrightarrow m = \frac{9}{4}\)

d. \(\left\{ {\begin{array}{*{20}{c}}{\Delta > 0}\\{{x_1}.{x_2} = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < \frac{9}{4}}\\{{m^2} - 2m = 8}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{9}{4}\\\left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 2}\end{array}} \right.\end{array} \right. \Leftrightarrow m = - 2\)

Với m = – 2, ta có PT: \({x^2} - 7x + 8 = 0\)

\(x = \frac{{ - b \pm \sqrt \Delta }}{{2a}} = \frac{{7 \pm \sqrt {17} }}{2}\)

Vậy m = –2; \(x = \frac{{7 \pm \sqrt {17} }}{2}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

PT \( \Leftrightarrow {\cos ^2}x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 2\sin x} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 2\sin x}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\) .

Lời giải

Cho hình bình hành ABCD có AD = 2AB. Từ C kẻ CE vuông góc AB, nối E với trung  (ảnh 1)

a. Ta có: MN // AB // CD (MN và AB cùng vuông góc với CE) và MD // NC (AD // BC) 

MNCD là hình bình hành (1) 

MD = \(\frac{{AD}}{2}\); MN = AB = \(\frac{{AD}}{2}\) nên MD = MN (2) 

Từ (1) và (2) MNCD là hình thoi. 

b. Do MN // AB // CD (câu a) và M là trung điểm AD 

F là trung điểm EC MF là đường trung tuyến của ∆MEC  với lại MF là đường cao của ∆MEC (MF EC)  ∆MEC cân tại M 

c. ∆MEC cân tại M và MF là đường cao của ∆MEC 

MF là đường phân giác của ∆MEC \( \Rightarrow \widehat {EMF} = \widehat {FMC}\) 

\(\widehat {AEM} = \widehat {EMF}\) (AB // MN); \(\widehat {FMC} = \widehat {CMD}\)(MNCD là hình thoi nên đường chéo MC là phân giác

Từ 3 điều trên \( \Rightarrow \widehat {AEM} = \widehat {EMF} = \widehat {FMC} = \widehat {CMD} \Rightarrow 2\widehat {AEM} = \widehat {FMC} + \widehat {CMD}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay